首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了对比研究不同种类水泥混凝土的抗碳化性能,通过试验,研究了水灰比、水泥用量和粉煤灰替代量等因素对硅酸盐水泥混凝土和矿渣水泥混凝土碳化深度的影响。试验结果表明,水灰比对两种混凝土碳化深度的影响规律相反,随着水灰比的增大,硅酸盐水泥混凝土除了28 d外,其他龄期的碳化深度都逐渐降低,而矿渣水泥混凝土各龄期的碳化深度都逐渐增大;随着水泥用量的增多,硅酸盐水泥混凝土的碳化深度先增大后减小,当水泥用量为400 kg/m3时碳化深度最大;随着粉煤灰掺量的增多,两种混凝土的碳化深度都逐渐增大,其中当粉煤灰掺量分别大于55%和45%时,硅酸盐水泥混凝土和矿渣水泥混凝土的碳化深度随粉煤灰掺量的增多大幅增长。  相似文献   

2.
为了研究轻集料混凝土的抗渗性能和抗碳化性能,通过试验研究了水灰比对轻集料混凝土抗渗性能、抗碳化性能,以及碳化龄期和瞬时荷载对抗碳化性能的影响,并与同等强度等级的普通混凝土作对比。结果表明,水灰比越大轻集料混凝土的抗渗性能和抗碳化性能越差,当水灰比超过0.38时,轻集料混凝土的抗渗性能和抗碳化性能比普通混凝土差;碳化初期,碳化深度随碳化龄期的延长急速增长,14 d结束时碳化深度达到整个碳化周期的70%左右;当瞬时荷载比小于60%时,碳化深度随着瞬时荷载比的变化趋势较缓慢,而当瞬时荷载比大于60%时,再增大瞬时荷载比会使碳化深度急剧增大,抗碳化性能急剧降低。  相似文献   

3.
基于碳化试验的经验模型,通过室内快速碳化试验研究水泥用量、水胶比、环境温度、环境湿度、CO_2浓度与混凝土碳化深度的关系,结果表明:随着水泥用量的增加,混凝土各龄期的碳化深度逐渐降低;随着水胶比的增大、粉煤灰掺量的提高、环境温度的升高、CO_2浓度的增加,混凝土各龄期的碳化深度逐渐增加;随着环境相对湿度的增加,混凝土碳化深度先增大后减小,在70%湿度下最大。研究为混凝土残余寿命的评估提供了理论支撑,具有一定的应用推广价值。  相似文献   

4.
配制了沥青路面铣刨料(RAP)掺量为20%、30%、40%、50%的RAP再生水泥混凝土,分析了R AP掺量对再生水泥混凝土抗压强度和碳化深度的影响,并与普通水泥混凝土进行了对比。结果表明:RAP的掺入会降低水泥混凝土的抗压强度,且掺量越大抗压强度降低越多;随着碳化时间的增加,R AP再生水泥混凝土的碳化深度随之增大,碳化速率随之减缓;R AP再生水泥混凝土的抗碳化性能随着RAP掺量的增大而降低;在现有碳化模型基础上,通过回归拟合得到了标准碳化条件下RAP再生水泥混凝土的碳化模型,可以较好地实现RAP再生水泥混凝土碳化发展趋势的预测。  相似文献   

5.
任妍妍 《湖南交通科技》2015,(2):139-140,146
为了研究石灰石粉轻骨料混凝土在盐溶液作用下的抗冻性能,通过室内试验,研究了冻融循环次数和石灰石粉掺量对轻骨料混凝土抗压强度、质量损失和相对动弹性模量等指标的影响。试验结果表明,冻融循环次数越多,轻骨料混凝土的强度和相对动弹性模量越小,而质量损失越大,其中当冻融循环次数由25次变为50次时质量损失大幅增大,由75次变为100次时相对动弹性模量急剧减小;总体来说,随着石灰石粉掺量的增大,强度和相对动弹性模量出现先增大后减小的趋势,而质量损失出现先减小后增大的趋势,当石灰石粉掺量为3%时,强度和相对动弹性模量达到最大值,而质量损失有最小值。  相似文献   

6.
分析了钢筋混凝土碳化的影响机理和钢筋混凝土碳化程度与时间的一维表达式和角隅区二维表达式,对水灰比、水泥用量、施工质量等影响混凝土碳化的几个主要因素进行了比较深入细致地分析,可为混凝土耐久性研究提供一定参考。  相似文献   

7.
为了研究陶粒水泥混凝土经济型配合比,通过初步拟定配合比与性能验证确定了陶粒的掺量,在此基础上通过设计正交试验研究减少水泥用量、增加粉煤灰用量对混凝土性能的影响以确定配合比。结果表明:当陶粒以100 kg/m~3、200 kg/m~3、300 kg/m~3、400 kg/m~3替换细骨料时,抗压强度增幅分别为5%、12%、15%与17%,抗折强度增幅分别为5%、10%、12%与14%,韧性呈下降趋势。水泥用量对试块性能影响最大,陶粒掺量次之,粉煤灰影响最小。随着水泥用量的减少、粉煤灰用量的增加,抗压强度与抗折强度均呈降低趋势,经济型配合比建议在保证性能的基础上适量减少水泥用量、增加粉煤灰用量。  相似文献   

8.
为了改善轻骨料混凝土的力学性能和耐久性能,采用了在轻骨料混凝土中混合掺加两种纤维的方法,即高模量的耐碱玻璃纤维和低模量的辅特维.通过辅特维掺量的改变,研究混杂纤维对轻骨料混凝土抗压强度、抗折强度及抗碳化性能的影响.试验结果表明:两种纤维混杂后对轻骨料混凝土的抗压强度影响不明显,抗折强度提高较多.在适当的掺量条件下,对抗碳化性能有很大的提高作用.  相似文献   

9.
为了探究不同水灰比和粉煤灰掺量下混凝土的抗硫酸盐侵蚀性能,通过室内试验研究了水灰比和粉煤灰掺量对混凝土坍落度、抗压强度的影响;水灰比和硫酸盐浓度对水泥砂浆受硫酸盐侵蚀后抗折强度的影响;粉煤灰掺量对水泥砂浆受硫酸盐侵蚀后抗折强度的影响。结果表明:水灰比越大混凝土的坍落度越大,抗压强度越小,砂浆受硫酸盐侵蚀后的抗折强度越小;适当增加粉煤灰掺量,能提高混凝土的坍落度和抗压强度,当粉煤灰掺量为20%时两者达到最大值,而砂浆受硫酸盐侵蚀后的抗折强度随粉煤灰掺量的增大逐渐增大;硫酸盐浓度越高,砂浆的抗折强度越低。  相似文献   

10.
F级粉煤灰-矿渣基地聚物混凝土,即GPC-10(矿渣掺量10%,80 °C高温养护)和GPC-50(矿渣掺量50%,标准养护)力学性能良好,为进一步研究其抗碳化性能, 首先,对这两种地聚物混凝土进行了快速碳化试验,并与作为对照组的普通水泥混凝土(OPCC)进行了比较,通过抗压强度和劈裂抗拉强度评价了碳化对混凝土的损伤;其次,为分析损伤原因,分别通过X射线能谱分析(EDS)和压汞测试(MIP),对碳化后的成分和孔结构进行了研究;最后,建立了两种地聚物混凝土的碳化模型. 研究结果表明:相比OPCC,地聚物混凝土的抗碳化能力薄弱,尤其是钙含量较高的GPC-50,其主要产物C—A—S—H会与CO2反应而发生分解,导致孔隙率增大,进而加快了碳化速率,且碳化深度与时间呈线性关系;OPCC、GPC-10以及GPC-50的28 d碳化深度分别达到了2.0、9.2、18.8 mm.   相似文献   

11.
为了探讨粉煤灰在水泥混凝土路面应用的可行性,试验研究了不同粉煤灰掺量下混凝土的力学性能和部分耐久性。研究结果表明:当粉煤灰掺量从0增大到40%,路面混凝土28 d弯拉强度降低了15%;28 d抗折强度降低了7%;28 d抗压强度的最佳掺量是30%;混凝土的氯离子扩散系数减小了12%;满足相关规范对路面混凝土力学性能和耐久性要求。  相似文献   

12.
粉煤灰陶粒混凝土具有自重轻、强度高,抗震性、耐久性、耐火性好,保温隔热等诸多优点,还能极大缓解粉煤灰固废带来的环境压力,经济和社会效益显著。为了探究不同配合比中各因素对粉煤灰陶粒混凝土强度的影响,从水灰比、水泥用量、砂率3个方面分析其对混凝土性能的影响,通过灰色关联分析法确定水泥用量和砂率的重要性系数,分析了其对抗压强度的影响规律。结果显示,3种因素均能对粉煤灰陶粒混凝土的强度造成影响,水泥用量相比砂率对混凝土强度的影响更为明显,而水灰比对混凝土强度影响不强。研究可为粉煤灰陶粒混凝土的推广应用提供参考。  相似文献   

13.
分析了砂率、孔隙率、水灰比对透水混凝土力学性能、透水性能的影响,研究结果表明透水混凝土力学性能随细集料掺量增加而提高,随目标孔隙率的增加而降低,随水灰比的增加先增大后减小,透水性能随细集料掺量、水灰比增加而减小,随目标孔隙率的增加而增加,其中对透水混凝土性能影响最大的为孔隙率,其次为细集料的掺量,水灰比影响较小。  相似文献   

14.
为了提高再生稳定碎石基层的路用性能,向集料中掺入水泥与粉煤灰比例为1∶3的结合料,展开试验研究。根据水泥稳定碎石基层配合比设计方法确定集料配合比,试验中再生骨料(10~30mm)的掺配比例依次为0%、20%、40%、60%、80%、100%,由最大干密度试验确定其相应的最佳含水量。通过无侧限抗压强度试验、劈裂强度试验、冻融循环试验进行性能分析。结果表明:再生基层混合料的无侧限抗压强度、劈裂强度都随再生骨料掺配比例的增大而增大,当再生骨料掺量为80%时达到最大值;而混合料的抗冻系数BDR随再生骨料掺量的增加逐渐减小。  相似文献   

15.
烧结砖再生骨料混凝土力学性能受到的影响因素较多,通过混凝土抗压强度试验与劈裂抗拉强度试验,研究了水灰比、砂率、再生骨料掺量、再生骨料的强度处理方式4种因素对混凝土力学性能的影响。研究表明:再生骨料混凝土的劈裂抗拉强度随着水灰比的增大而降低,水灰比取0.75到0.80较为合适;在一定范围内,再生骨料混凝土抗压强度与劈裂抗拉强度随着砂率增大而降低,砂率取35%~40%为宜;对再生骨料混凝土强度要求较高时,利用烧结砖再生骨料替代天然骨料的比例应控制在30%以内;对烧结砖再生骨料用水泥浆进行包裹处理可有效提高骨料的性能。  相似文献   

16.
为了寻找长期服役的喷射混凝土配合比,采用低场核磁共振技术,研究了不同粉煤灰掺量改性胶凝材喷射混凝土的微观孔隙结构,测定了不同掺量的粉煤灰喷射混凝土在不同养护龄期的微观孔隙结构分布特征及孔隙度.研究结果表明:掺有粉煤灰的喷射混凝土孔隙度随粉煤灰掺量的增加而增大,随龄期的延长总体呈现先减小后趋于平稳的趋势;粉煤灰掺量为10%时孔隙度最小,掺量为0时孔隙度最大;在7 d龄期后,不同粉煤灰掺量的喷射混凝土内部孔隙半径主要在1~80 nm的范围内,该半径范围内的孔隙含量占总孔隙含量的80%,最可几孔半径在12 nm.   相似文献   

17.
粉煤灰再生混凝土的物理力学性能研究   总被引:2,自引:0,他引:2  
对粉煤灰再生混凝土的物理力学性能进行了研究,研究结果表明再生骨料的使用对于混凝土的工作性有巨大的影响,但如果再生粗骨料掺量控制在50%以内时,则对混凝土工作性的影响相对较小;粉煤灰的掺入,可以使得再生混凝土达到较高的强度(强度等级可达C50),且其强度并非随再生骨料掺量的增加而降低,而是存在一个最佳值;粉煤灰再生混凝土的弹性模量随再生骨料掺量的增加而降低,但其本身具有高强度低弹模的特性;粉煤灰再生混凝土的劈拉强度、抗折强度与抗压强度之间存在较好的相关性。  相似文献   

18.
高含量粉煤灰混凝土的路用性能评价   总被引:1,自引:1,他引:0  
基于室内试验研究超塑化高含量粉煤灰(HVFA)的路面施工性能。采用掺量为400kg/m^3的普通波特兰水泥(OPC)拌制水、胶凝材料质量比为0.40,0.34和0.30的3种基础混凝土试样,再用等质量的粉煤灰分别替代3种基础混凝土试样中20%,30%,40%,50%和60%的水泥拌制成混凝土试样,测试所有试样在7,28,90,180,365d的抗压强度、抗弯强度及干缩性能。结果表明,用等质量粉煤灰替代60%水泥的HVFA可以满足水泥混凝土路面的强度与和易性要求。  相似文献   

19.
透水混凝土的性能受到成型方法与材料配比等因素的显著影响。通过试验研究了成型方式、振动时间、砂率、骨料粒度和水灰比等5个因素对透水混凝土的影响规律;并对试验数据进行曲线拟合,获取使透水混凝土性能达到最佳的影响因素范围。结果表明:机械振捣+静压得到的混凝土透水与力学性能为最佳,适当增加机械振捣时间能够改善混凝土的透水性能与力学性能,但是时间不宜过长;透水混凝土的孔隙率和透水系数随着砂率的增加不断减小,抗压强度则随着砂率的增加而增大;若需要较好的力学性能则适当增加小粒径的粗骨料,若需要较好的透水性能则可增加大粒径粗骨料;振捣时间为8~12 s、水灰比为0.27~0.3时混凝土性能较为优越。  相似文献   

20.
为优化泡沫沥青就地冷再生混合料级配,研究了水泥、机制砂和19~26.5 mm粗集料对冷再生混合料水稳定性的影响。结果表明:随着水泥用量增加,冷再生混合料水稳定性能逐渐增加;随机制砂掺量增加,冷再生混合料水稳定性能先增大后减小;随19~26.5 mm粗集料用量增加,冷再生混合料高温稳定性能,先增加后减小,当19~26.5 mm粗集料掺量为10%~20%时,与不掺新集料相比,残留稳定度、冻融劈裂强度均有所提高;基于水稳定性进行级配优化时,应优选考虑掺加1.5%水泥和10%~20%的19~26.5 mm粗集料,其次可以根据再生需要选择机制砂掺量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号