首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《公路》2020,(7)
采用Realizable k-ε湍流模型,研究了未设置风屏障和设置50%透风率风屏障两种工况下的圆环形桥塔区域行车风环境特点。研究结果表明:桥塔周围存在明显的加速区域,最大风速系数可达1.3,使得车辆通过桥塔区域时将经历剧烈的风速变化,可能影响行车安全。设置50%透风率风屏障以后,桥塔周围未出现明显的加速区域,桥面风速变化较小,有效改善了圆环形桥塔区行车风环境。  相似文献   

2.
在较大的侧风作用下汽车行驶在桥面时易发生行驶偏向问题,尤其在桥塔区域,风速的剧烈变化极易导致车辆事故。本文以虎门二桥工程中的泥洲水道大跨悬索桥为背景,通过风致车辆侧偏动力响应分析和风致侧偏响应评价标准,建立了不同车速条件下代表车型的车辆侧偏安全临界风速;采用虚拟风洞针对主桥、引桥二维绕流及桥塔区桥面的三维绕流进行了模拟,提取了表征桥面风环境的风速影响系数,对设置风障前后情况的对比分析,证明了风障的有效性;通过风致侧偏安全评估给出了代表车型不同车速下的安全行车临界风速,通过风障结构措施和交通管理措施的结合,可使运营期桥面通行安全风速达到9级及以上,并建议了大桥风雨天运营安全控制标准,研究成果可为类似工程借鉴和参考。  相似文献   

3.
以泰州大桥桥塔区桥面风环境为研究对象,针对桥面横风下的原设计方案及加设不同风障的多种情况,采用数值风洞技术进行了仿真计算与分析,得出了适用于泰州大桥的风障布置方案;通过风障障条风荷载数值模拟、风障结构风荷载作用有限元建模以及风障结构风荷载响应分析,验证了所设计的风障方案的结构安全性满足相关规范要求。  相似文献   

4.
某悬索桥位于平原地区,为了提高其运营管理效率并且保障行车安全,对桥面行车风环境进行研究。采用数值风洞的方法,对主桥、引桥跨中截面二维流场以及桥塔区的三维流场进行了研究,并且提出了两种风障设计方案。通过对等效桥面风速计影响系数的对比研究,确定了风障方案的挡风效果,为大桥的行车安全提供保障。  相似文献   

5.
采用风速概率密度函数和风向频度的乘积表示联合概率密度函数,用极大似然法和概率曲线相关系数法相结合的逐步迭代估计法估计杭州湾跨海大桥桥位处桥面高度各风向的有效最优概率分布类型及参数;利用已建立的风-汽车-桥梁系统安全性分析框架计算得到各个方向下车辆发生事故的临界风速;为了确定桥面局部风环境的状况,在同济大学TJ-3风洞中进行了杭州湾跨海大桥桥面风环境风洞试验研究,并引入等效桥面风速和影响系数以考虑桥梁结构绕流和附属构造物对行车高度处风速的影响;最后,对杭州湾跨海大桥的行车安全进行了基于风速风向的概率性分析,并研究了增设风障对行车安全的影响。结果表明:增设风障是一种非常有效的提高安全行车概率的方法;杭州湾跨海大桥全桥采用70%透风率的风障完全可以满足车辆安全行驶的要求。  相似文献   

6.
现阶段山区公路混凝土单箱梁、平行箱梁的风障设置研究存在不足。本研究采用计算流体力学(CFD)中的三维大涡模拟(LES)方法,针对不同风障布置形式下的混凝土单箱梁、不等间距平行箱梁的桥面风环境进行了研究,建立了有限体积模型。研究了来风上下游侧风障对单箱梁桥面风环境的影响,发现在单箱梁来风上游侧布置的风障能够显著降低桥面风速,而在来风下游侧布置的风障则无法起到有效的挡风作用。因此,当平行箱梁间距过大时,来风下游侧的箱梁由于缺乏上游侧风障的保护,桥面风环境恶化。针对这一问题,研究了平行箱梁内侧未加装风障时的桥面风环境,计算了车道平均风速和风速折减系数。研究发现,下游侧箱梁桥面平均风速随着平行箱梁间距的增大而增大;当间距增大到一定程度后,下游侧箱梁由于进入了上游侧箱梁尾流的充分发展区,造成下游侧箱梁桥面平均风速增高、风场紊乱。进一步研究了平行箱梁内侧加装风障后的桥面风环境,发现下风侧箱梁桥面平均风速大幅减小,上游侧梁的尾流涡对下游侧箱梁桥面风环境造成的不利影响也受到了有效的抑制。综上所述,单箱梁下风侧安装的风障不能改善桥面风环境、当平行箱梁间距超过2倍梁宽时,应在平行箱梁内侧加装风障。  相似文献   

7.
为研究深切峡谷地形条件下的桥面局部风场,对桥梁跨中和过桥塔区局部区域风环境开展了现场实测。对局部风场特征进行了讨论分析,其中包括平均风速特征、紊流度、脉动风速功率谱和极值风速分布等。探讨了跨中和桥塔区位置风剖面分布,同时给出了跨中和桥塔区的平均风速拟合关系,量化了过桥塔区顺桥向风速分布的桥塔遮挡效应和地形加速效应,总结提出了一种典型的过桥塔区顺桥向风速曲线模型。此外,桥塔区域风速紊流度显著大于跨中位置,表明桥塔和特殊地形对局部风场存在较大影响。桥塔区脉动风速实测谱高频段能量明显上升,与惯性子区谱-5/3斜率衰减效应变化特征不符。相较于规范风谱,推荐了3阶双对数多项式,可更加准确地表征脉动风湍流能量在频域上的分布特征。对瞬态阵风极值风速的分析结果表明,相较于平均风速,极值风速用于评估行车安全更为合理。  相似文献   

8.
为研究车辆在突变风荷载作用下的气动特性,以大客车为研究对象,采用计算流体力学CFD(computational Fluid Dynamics)数值模拟方法,对侧向风作用下车辆风荷载突变过程中车辆的气动力特性进行了研究。采用动网格技术实现了对车辆行驶出隧道及通过桥塔区域时车辆风荷载的突变过程的动态模拟,分析了车体表面压力分布及气动力系数变化规律,讨论了车速、风速、车辆所处车道位置对车辆气动力系数变化的影响。研究结果表明:车辆行驶出隧道及车辆穿过桥塔区域时隧道及桥塔遮风效应的影响区域变长,车辆的三分力系数均有较大的突变。车辆所受风荷载突变使车辆的安全稳定系数发生较大突变,对车辆的行车安全和舒适性带来较不利的影响。  相似文献   

9.
为研究桥塔遮风效应对移动列车气动参数的影响,以沪通长江大桥这一钢桁梁斜拉桥为背景,基于移动列车模型试验装置,设计了缩尺比均为1:30的桁梁、桥塔和CRH3列车模型,依托XNJD-3风洞实验室进行了一系列试验。基于测试结果,分析列车通过桥塔区域时车速、风速以及合成风向角对列车气动参数的影响,并利用风-车-线-桥耦合振动模型分析了桥塔处气动参数突变对CRH3列车行车安全的影响。研究结果表明:桥塔遮风效应对移动列车影响显著,车辆气动参数在桥塔区域呈现突变的现象,升力系数和阻力系数经历了先减小后增大的过程,力矩系数则先增大后减小;风速越低,气动参数曲线在桥塔处的突变程度越大;气动参数曲线的突变宽度远大于桥塔自身的宽度,且车速越高突变宽度越大;合成风向角越小,列车气动参数在桥塔区域的变化越显著;列车离开桥塔区域时,桥塔尾流会造成升力系数和阻力系数局部增大;在考虑桥塔遮风效应的情况下,列车车体加速度在桥塔区域急剧增大,当列车远离桥塔区域时又逐渐减小;桥塔遮风效应会威胁列车的行车安全,未考虑桥塔遮风效应的分析结果是偏不安全的。  相似文献   

10.
路堤的阻挡作用致使路堤顶面局部出现风速过大的情况,影响行车安全.为了研究适合于侧风多发区路基的合理风障形式,分别建立了不透风风障和透风式风障的有限元模型,通过计算分析得到了不同工况下的风速场.依据风速的降低程度分析了基于行车安全的风障的合理形式.研究结果表明:不透风风障和透风式风障应高于2m∶5 m高路基可以采用65%及以下空隙率风障,而对于10 m高路基可以采用75%及以下空隙率的风障;相同空隙率条件下,风障条间距的大小对风速场影响不大.  相似文献   

11.
桥面侧风对行车安全性影响的概率评价方法   总被引:7,自引:1,他引:7  
针对高速公路综合管理需求,研究强风天气的大跨度桥梁行车安全性问题。在考虑风速、车型、路面条件和车速的基础上,分析了4种典型车辆的安全行车临界风速,结合桥位风速观测资料统计和桥梁结构对桥面风速的影响,建立桥面行车高度的等效风速概率模型,提出了概率评估方法,并将此方法应用于杭州湾跨海大桥和苏通长江公路大桥的桥面行车安全性分析。研究结果表明:侧滑是行车安全性的主要问题,大跨度桥塔附近的侧风影响最为严重。  相似文献   

12.
通过风洞试验研究了在设置防撞栏和风障两种情况下力洋港大桥桥面风速分布情况。试验结果表明,在设置了风障后,消除了桥面2~4.5 m高度范围内桥面高风速区,有效降低了桥面侧向风速,使得大桥桥面具有了比其接线高速公路更为优良的侧风行车安全性。  相似文献   

13.
桥墩的存在改变了主梁的空气绕流特征,容易使桥面形成局部风场,可能导致桥上运行车辆气动力的突然变化而直接威胁行车安全。然而,目前对于桥墩影响下桥面的局部风环境少有研究。为探明桥墩影响下桥面的局部风场特性,本研究以数值模拟方为基础开展了研究。以某跨海大桥桥墩—主梁侧风绕流为对象,采用CFD数值分析方法建立模型,探究桥墩附近桥面不同行车道上局部风环境特征,通过有无风屏障的模拟分析风屏障对桥面风环境突变效应的影响,考察了桥墩影响下桥面局部风场沿桥轴向的变化。通过与风洞试验结果进行对比,验证了所采用数值模型及计算方法的准确性。通过不同风速条件确定了雷诺数对有无风屏障下桥面风场的影响,以桥墩-主梁绕流的流线明确了局部风场特征,采用风速变化率量化桥墩影响下桥面风环境的突变效应。分析表明:对于所采用的桥墩-主梁对象与风屏障,桥面风环境对雷诺数不敏感;桥墩的出现导致了桥面出现大的漩涡与分离流动从而形成了桥面局部风场,使得车辆高度范围内迎风侧车道风速总体大于背风侧车道;桥墩沿桥轴向对桥面局部风场的影响随车道与高度的不同而存在差异,背风侧车道受影响高度大于迎风侧车道;风屏障弱化了风速在桥墩附近的突变效应,有利于桥面行车安全。  相似文献   

14.
为了研究风-车-桥耦合系统中车-桥系统的振动特性及车辆行车安全特性,得到车辆在大跨度桥梁上行驶时车辆的安全行驶临界风速,对车辆通过大跨斜拉桥时车辆的气动特性、车-桥系统的振动特性及车辆的行车安全特性进行研究。研究风荷载作用下车辆在大跨度桥上行驶时车辆的行车安全临界风速,分析车辆行驶速度、路面状况及风偏角对车辆行驶安全临界风速的影响。车-桥系统的耦合振动会导致车-桥系统周围风场的特性发生变化,风场的变化会导致下一时刻车-桥系统的受力状态发生改变。考虑车辆运动及车-桥系统的振动与车-桥周围风场的相互影响,基于双向流固耦合数值模拟,建立风-汽车-桥梁空间耦合振动数值分析模型。通过风-车-桥耦合系统三维数值分析,得到了风荷载作用下车辆在大跨度桥上行驶时不同状况下车辆的倾覆及侧滑临界风速。结果表明:基于双向流固耦合数值分析能够较精确地模拟风-车-桥耦合振动系统;风荷载作用下车辆在桥上行驶时,车辆的振动特性主要由汽车-桥梁系统决定,车-桥系统的振动特性受自然风荷载影响;侧向风荷载作用下车辆的倾覆力矩系数及侧向力系数并不一定为最大值,车辆在大跨径桥上行驶受侧向风荷载作用并不一定为行车安全分析的最不利状况。  相似文献   

15.
跨海长桥风致行车安全研究   总被引:6,自引:0,他引:6  
基于风作用下车辆模型行驶极限状态分析获得了相应的安全行驶临界风速,应用概率统计方法建立了桥位风速统计和极值风速概率分布模型,桥面风环境测速风洞试验给出了自然风与桥面行车风环境的关系,进而评估了自然风作用下车辆不同车速条件下的桥面行驶安全性。采用上述评估方法针对杭州湾跨海大桥的研究,表明了风障措施提高桥面行车安全的有效性。  相似文献   

16.
杭州湾跨海大桥风障设置风险评估   总被引:1,自引:1,他引:1  
阮欣  陈艾荣  王达磊 《桥梁建设》2007,(1):78-80,84
杭州湾跨海大桥跨越水域气象条件复杂,侧风对行车安全影响突出。基于公共安全风险评价指标,提出设置风障必要性的风险评估方法;在此基础上,基于对设置风障费用和收益的分析,提出备选风障方案优选风险评估方法。从而形成包括风障设置必要性、方案优选方法等的风障设置风险评估方法体系,为科学决策提供依据。  相似文献   

17.
为研究桥上风屏障局部破坏对桥梁列车行车安全性的影响,以某四塔公铁两用斜拉桥为背景,进行列车动力响应和行车安全性影响参数分析。推导列车通过风屏障破坏段时车辆和桥梁的风荷载,并通过桥梁和列车节段模型风洞试验,测得计算所需气动力系数;在此基础上建立风-车-轨-桥耦合振动模型,研究了风屏障破坏段长度、平均风速和列车车速对列车动力响应及行车安全的影响。结果表明:突风效应会导致列车横向位移达到最大值,遮风效应会使列车横向加速度达到最大值;随风屏障破坏段长度、平均风速和列车车速的增加,列车动力响应随之增加;风屏障破坏会增加列车的轮重减载率和脱轨系数,并且高风速下各节车辆在风屏障破坏段的脱轨系数差异较大;仅在风速不大于10 m/s时,列车可以180 km/h的车速安全通过风屏障破坏段。  相似文献   

18.
大跨度桥梁风障的设计、研究及应用   总被引:2,自引:0,他引:2  
过去10年里,在高风速条件下对桥梁的限制使用和桥上车辆倾覆的报道逐的增加。虽然如此,但设计者可得到的用于减小风对结构不利影响的数据却非常少。最近,英国的两座大跨度桥梁文桥和伊丽莎白女王Ⅱ桥为减小风的影响而设置了风障,而塞文二桥采用了连续风障,并通过风洞试验确定了桥梁和车辆的其它细部构造。列举了一些桥梁风障的实例,详细介绍了其设计与应用。  相似文献   

19.
针对山区峡谷桥址地形模型入口边界确定问题,以贵州省湘江特大桥桥址处地形为依托,选择维多辛斯基曲线作为地形模型过渡段的基本曲线形式,采用计算流体动力学方法对不同曲线参数进行计算,并结合关联度权重确定法确定最优过渡段曲线参数。在此基础上设计并制作了几何缩尺比为1:1 500的桥位地形模型,分别进行了有、无过渡段地形模型的风洞试验,对比了地形模型有、无过渡段对桥位桥面高度处横桥向风速、风攻角以及桥梁总长1/4跨、1/2跨、3/4跨风剖面的影响。过渡段曲线的二维数值模拟结果表明:采用最优过渡段可有效降低模型边界后方气流等效风攻角,并最大程度地保持入流风速,减小过渡段后湍流度;设置过渡段后风速场分布特性与入流参考风速场分布特性的一致性较好。地形模型风洞试验结果表明:曲线过渡段使风剖面逐渐抬升,气流过渡平缓,不存在明显的加速效应,剪切层发展较慢;设置过渡段后不同风剖面位置处平均风速较无过渡段时大,湍流强度较无过渡段时低;设置过渡段对桥梁主梁高度处风攻角存在一定的影响,但有、无过渡段时的风攻角变化趋势大致相同;采用优化后的过渡段使风剖面逐渐抬升,减小了"人为峭壁"对地形模型试验结果的影响,主梁高度处横桥向风速总体大于无过渡段时主梁高度处横桥向风速。  相似文献   

20.
《公路》2020,(8)
采用二维SSTk-ω湍流模型计算了根据Den Hartog判据得到的桥塔驰振临界风速以及考虑振型、截面变化和风剖面影响后的桥塔驰振临界风速,并与风洞试验结果进行了对比,同时,还研究了方柱驰振性能随切角率的变化。结果表明:根据Den Hartog判据计算所得桥塔驰振临界风速与风洞试验结果差别巨大,Den Hartog判据不能运用于变截面桥塔驰振临界风速计算中。考虑振型、截面变化和风剖面影响后的桥塔驰振临界风速计算结果比风洞试验结果偏小,结果偏于保守,误差在实际工程允许范围内。因此,考虑振型、截面变化和风剖面影响后能大大改善桥塔驰振临界风速计算精度。对方柱进行切角处理不一定能改善驰振性能,只有当切角率27%时才会明显改善方柱驰振性能,切角率≤15%时反而增加方柱驰振不稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号