首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对折线墙背上主动土压力和挡土墙稳定状态的研究   总被引:3,自引:0,他引:3  
基于土的塑性极限分析理论,考虑墙后为无粘性填土的情况,对折线型挡土墙背上的主动土压力和挡土墙抗倾覆稳定状态等进行了较为系统地研究。综合挡土墙上的最大主动土压力和最小抗倾覆安全系数两方面的研究,认为折线挡土墙背优化的H1/H值在0.5左右为好。  相似文献   

2.
地震多发区的刚性挡土墙设计,确定地震主动土压力大小及合力作用点位置至关重要,但以往国内外学者多采用拟静力学法进行分析计算.为使理论分析更贴近实际,设地震时墙后填土受到正弦式稳态振动作用并考虑时间和相位差,采用拟动力学的极限平衡方法(仍假定土中破裂面为平面),分析并建立了无粘性填料的墙背及填土面倾斜刚性挡墙地震主动土压力系数、压应力分布及其合力计算公式.在此基础上,探究了填土摩擦角φ、墙背与土摩擦角δ、墙背倾角α、填土面倾角i以及水平与竖向地震加速度对最危险破裂面倾角θ、主动土压力系数及土压应力分布的影响.与已有分析方法比较,该文提出的地震主动土压力呈非线性分布的结论更加符合工程实际.  相似文献   

3.
为研究填土宽度、粘聚力、内摩擦角和计算深度等对墙后有限宽度土体主动土压力分布的影响,建立有限土体数值计算模型,结合工程算例,将有限元法与前人提出的几种有限土体主动土压力计算方法进行对比分析。结果表明,在同一深度处,有限土压力随土体粘聚力的增大而减小,随摩擦角和计算宽度的增大而增大;主动土压力随有限土体宽高比的变化呈上凸曲线,在一定填土宽度范围内,墙背和已有建筑物墙背越粗糙,摩擦系数越大,主动土压力越大;有限元法的分析结果与基于极限平衡理论及平面滑裂面假定的有限土体主动土压力计算方法的结果最相近。  相似文献   

4.
为了进一步完善非极限状态主动土压力计算中的不足,并就填土张拉裂缝深度的理论计算展开研究,以复杂工况下刚性挡土墙为研究对象,综合考虑挡土墙变位模式、填土种类、墙背与填土面倾角、墙土摩擦、填土张拉裂缝影响及超载作用等因素,基于薄层单元法,并结合墙土相互作用强度参数与位移的非线性关系,推导得到一种非极限状态主动土压力计算公式;通过与文献特例、试验数据比对,验证了所构建公式的合理性。当墙背填土为黏性土时,利用土压力计算公式及挡土墙模型中的几何关系,建立了填土张拉裂缝深度与挡土墙位移的关系方程,并绘制出不同影响因素下裂缝深度随挡土墙位移的变化曲线,其变化规律与模型试验结果基本吻合。研究结果表明:考虑因素的增多使得非极限状态主动土压力计算过程变得复杂,但假设条件与实际工况更加接近,其计算误差得以降低,且通过迭代法计算方程可以得到满意的数值解;张拉裂缝开展深度随挡土墙位移呈非线性增长,在位移初期增长较快,而接近极限位移时裂缝开展趋于稳定;不同因素对于填土张拉裂缝开展产生的作用存在差异,其中填土内摩擦角和黏聚力影响显著,超载和填土面倾角影响次之,墙背倾角影响最小;降低填土抗剪强度,增加超载以及选择仰斜式挡土墙均有助于抑制张拉裂缝的开展。  相似文献   

5.
针对经典朗肯与库仑土压力理论的适用范围较小且未能考虑挡墙位移对土压力的影响这一事实.根据已有文献对准主动状态下土体摩擦角、黏聚力发挥值与位移关系的研究,采用位移有效面积比方法将该关系量化至绕墙底转动位移模式挡墙,在此基础上结合斜向层分析法推导了考虑填土的黏聚力、墙土间黏着力、均布超载作用等条件下的非极限主动土压力合力及其作用点位置、土压力分布计算式.相应简化条件下,该公式能够简化为朗肯、库仑理论计算式.算例分析结果表明:理论计算值与试验实测数据基本吻合,初步获得了绕墙底转动位移模式下黏性土非极限土压力随位移变化的规律.  相似文献   

6.
以墙后为无粘性填土且填土面作用均布超载的竖直刚性挡土墙为研究对象,考虑土拱效应及水平土层间的剪应力,引入水平层分析法,得到平动模式下均布荷载引起的主动土压力表达式。计算表明,地面超载引起的主动土压力沿墙高并非均匀分布,而是显现出上大下小的非线性特征,这样合力作用点的高度将高于墙高的二分之一。因此按传统方法计算土压力时将会高估挡土墙的抗倾覆稳定性。  相似文献   

7.
假定有限填土为单滑块或双滑块破坏模式,引入上限法和Mononobe-Okabe拟静力法,考虑地震与超载共同作用,推导得到了墙背倾斜粗糙、填土面倾斜时有限填土主动土压力上限解。通过与已有室内模型试验结果对比,验证了本文方法的合理性。同时,算例分析表明:有限填土挡墙上的主动土压力强度呈非线性分布;当有限填土宽度小于满足半无限体假设的临界值时,其主动土压力值小于库仑解,且填土宽度越窄二者差值越大;有限填土主动土压力随水平地震系数k和填土面上超载q的增大而增大,但滑裂面倾角随k的增大而减小,随q的增大而增大。  相似文献   

8.
重力式挡土墙墙背土压力及其分布的研究   总被引:2,自引:0,他引:2  
库伦土压理论问世以来,其压力分布问题一直未获圆满解决。湖南省交通科学研究所从1976年开始进行专题研究,通过理论推导和试验验证,导出了重力式挡土墙墙背主动土压力的非线性分布解。在1986年发表予《中南工路工程》上的“粘性土对挡墙侧压力的非线性分布”一文的基础上,将土压力分布的理论计算公式推广至填料面倾斜的情况,其理论计算方法的要点包括: a.公式推导时所用的假设条件是在库伦假设的基础上加以扩展的;b.公式适用于包括粘性土在内的任何土质,c.重力式挡土墙墙背主动土压力分布强度P的表达式是本理论推导的基本公式,据此计算的主动土压力合力作用点位置,低时不到0.25H,高时可达0.45H左右;d.由P积分求得的合力表达式与用滑楔整体静力平衡法求得的合力公式一致;e.对于理想砂土,本理论导出的合力表达式的简化形式与库伦公式完全相同。介绍的理论计算方法,不但拓宽了库伦主动土压力理论的适用范围,而且解决了主动土压力沿墙高的分布问题。  相似文献   

9.
为了研究从静止到主动状态或从静止到被动状态下墙体侧向位移与墙背土压力大小的关系,以应力Mohr圆为出发点,通过引入内摩擦发挥角,推导了主动与被动状态间土压力与内摩擦发挥角的统一表达式。根据所构建的墙体位移与土体剪应变几何方程以及等极限应变下的剪应变-剪应力理想非线弹塑性物理模型,建立了能基本反映土体应力-应变特性和墙后填土初始应力状态的墙体位移-土压力统一函数关系式,并结合Coulomb土压力模型近似考虑了墙背与填土间摩擦力的影响。研究结果表明:影响墙体位移-土压力关系的核心要素是墙背初始应力状态、墙后滑移区范围及填土应力-应变特性;初始侧压力系数的增加,直接导致进入主动与被动状态所需墙体位移出现相应的增大和减小,墙体位移-土压力曲线沿水平轴呈现出整体平移的变化;土体内摩擦角和墙土摩擦角的改变会引起滑移区范围的变化,从而使墙体位移-土压力曲线整体放大或缩小;填土应力-应变特性是墙体位移-土压力关系的微观本质,其模量比与极限剪应变对墙体位移-土压力曲线的平缓程度及极限状态下的墙体位移大小影响显著。  相似文献   

10.
针对经典的Rankine或Coulomb土压力理论不适用于山区挡土墙或邻近既有地下室基坑工程中常常遇到的墙后为有限宽度填土的情况,以墙背和稳定岩质坡面间为有限无黏性填土的刚性挡土墙为研究对象,假定在平面应变条件下,墙体平移使得墙后土体在极限平衡状态时出现通过墙踵的直线形或折线形滑裂面,且其中形成圆弧形土拱,考虑滑动土楔内水平土层间存在的平均剪应力,引入水平层分析法,得到非线性分布的主动土压力表达式。通过与文献中离心机模型试验结果的对比,验证所提方法的合理性,并在此基础上,以三角形和矩形断面有限填土挡土墙为例,探讨墙背倾角、岩质坡面倾角、墙土摩擦角、岩土摩擦角、填土内摩擦角或填土宽度等参数对主动土压力的影响。计算结果表明:该方法合理可行;有限填土时主动土压力沿墙高一般为非线性分布,且其合力作用点的位置一般不在墙高的1/3处;当填土宽度较大时,主动土压力合力大小有可能大于Coulomb土压力理论计算值,而且对于矩形断面有限填土的挡土墙,滑裂面的倾角都小于Coulomb土压力理论值。  相似文献   

11.
根据土拱效应原理和摩尔应力圆,获得了考虑墙背倾角影响的墙背法向主动土压力系数,然后根据水平微分滑裂体的竖向静力平衡得到了平移模式下的倾斜刚性挡土墙法向主动土压力、法向主动土压力合力及其作用点高度等的计算式。进一步分析了墙背倾角、墙土摩擦角和填土内摩擦角对法向主动土压力及其系数、法向主动土压力合力及其作用点高度的影响。  相似文献   

12.
基于拟动力方法的地震条件下挡土墙主动土压力研究   总被引:2,自引:0,他引:2  
为了研究地震条件下挡土墙的主动土压力,基于传统的滑楔体极限平衡理论,采用拟动力方法,得到了地震条件下主动土压力的计算公式以及临界破裂角的解析解.主动土压力的计算公式考虑了地震力、挡土墙后填土的内摩擦角和粘聚力、挡土墙与后填土之间的摩擦角和粘聚力、挡土墙的倾角以及超载角等影响因素,并分析了这些因素对临界破裂角和地震主动土压力系数的影响.研究结果表明,当不考虑土体放大系数和挡土墙后填土的粘聚力的影响时,临界破裂角小于Mononobe-Okabe方法计算出的破裂角;临界破裂角随着土体放大系数的增大而减小;地震主动土压力系数随着地震系数、挡土墙倾角或者超载角的增大而增大,随着挡土墙后填土的内摩擦角或者土体放大系数的增大而减小,随着挡土墙与后填土之间的摩擦角的增大表现为先减小后增大.  相似文献   

13.
考虑土拱效应的非极限主动土压力计算方法   总被引:2,自引:0,他引:2  
针对平动模式下的刚性挡土墙,提出了考虑土拱效应的非极限主动土压力计算方法。考虑墙体平动位移对墙后填土内摩擦角与墙土界面上的外摩擦角的影响,建立了内外摩擦角与位移之间的关系式。对未达到极限位移的挡土墙,分析墙后小主应力拱的应力状态,并结合位移与摩擦角之间的关系,把主动侧土压力系数与挡土墙位移联系起来,将其用于水平微分单元法求解平动模式下挡土墙非极限主动土压力,给出了考虑土拱效应的非极限主动土压力分布、合力及作用点的理论公式,并与不考虑土拱效应的非极限主动土压力计算方法进行了比较。结果表明:该方法可行有效;土压力合力大小相等,但合力作用点与土压力分布存在明显差别;研究成果可为相关工程提供参考。  相似文献   

14.
基于水平层分析法的思想,采用薄层微元法,推导了考虑挡墙墙高、墙背倾角、填料面仰角、均布超载、填料重度、填料摩擦角、填料与墙背粘结力和摩擦角(外摩擦角)等条件下的粘性土被动土压力公式的解析解,采用图解法给出了临界破裂角的显式解答.并分析了这些因素对被动土压力临界破裂角、被动土压力强度分布、土压力合力大小和作用点位置的影响...  相似文献   

15.
《公路》2020,(5)
由于建设用地紧张,在工程中时常存在新建挡土结构紧邻已有结构,墙后填土宽度有限的情况。因不满足半无限土体的基本假定,在此类工程中采用经典理论预测土体的破坏模式及其极限状态土压力,结果与实际有较大偏差。通过活动挡墙模型试验,观测不同宽度条件下墙后填土主动极限状态的破坏过程及破坏模式。试验结果表明:土体宽度的压缩使得破坏滑动面的倾角增大;当土体宽度足够小时,破坏滑动面发展至墙面后反射形成第二道滑动面发展至土表。建立二类土压力计算模型,采用极限平衡法推导了平动位移模式下有限宽度无黏性填土主动土压力计算式,计算结果与已有研究数据对比验证了其适用性。  相似文献   

16.
以一高速公路轻型支挡结构监测项目为依托,对锚拉式柱板墙挡板背土压力进行了现场测试,分析了锚拉式柱板墙挡板背土压力随深度、时间变化的分布规律,探讨了理论计算值与实测值差异的原因。结果表明:土压力与填土深度并非线性关系,当达到一定深度后反而减小。土压力计算值相对于实测值偏大,最大值都出现在墙高的2/3位置。实测墙背土压力合力作用点比理论作用点有所上移,在0.41的填土高度处。  相似文献   

17.
以包茂高速公路工程为依托,通过现场测试高填方路基下涵洞外界面受力,研究了涵洞受力规律和内在机制。结果表明:涵顶土压力随填土高度增大非线性增加,其中侧墙顶土压力大于填土自重且其增长率随填土增加逐渐减小,涵顶中心土压力在填土达到一定高度后大于填土自重,且其增长率保持稳定;填土完成后,两侧墙顶土压力约为填土自重的2.1~3.0倍,涵顶中部土压力约为填土自重的1.4~1.8倍;侧墙土压力小于静止土压力,实测水平土压力与静止土压力的比值为0.03~0.61;涵洞基底土压力呈不均匀分布,实测基底土压力与涵顶土压力平均  相似文献   

18.
利用FLAC-3D建立起三维有限差分衡重式挡土墙模型,研究分析了在墙后填土自重荷载和列车动荷载作用下,挡土墙墙背土压力变化规律,并分析了挡土墙水平作用力、抗滑和抗倾覆稳定系数随车速的变化规律。结果表明:荷载对挡土墙的影响主要集中在上墙的中下部,车速对水平土压力作用点位置以及挡土墙稳定性影响不大。  相似文献   

19.
《公路》2021,66(6):25-31
合理确定水平土层间剪切作用是计算任意位移模式下挡墙土压力的关键,相关计算理论在考虑剪应力时缺乏一定的理论依据和试验支撑。针对组合位移模式下的刚性挡土墙,首先基于考虑位移效应的Mohr应力圆,得到由土拱效应导致主应力偏转所产生的剪应力;在此基础上,由直剪试验比拟土层错动作用,建立了剪切系数与位移模式参数n的幂函数关系式。将其应用于改进的水平层分析法,得到了组合位移模式下刚性挡土墙非极限主动土压力的求解方法。某些单一位移模式下挡墙土压力理论解为本文的特解,说明本文理论推导的可靠性。参数研究表明:RTT模式下,非极限主动土压力呈凸曲线分布,峰值位置随n的增大而上移,且高于已有理论解;RBT模式下,非极限主动土压力呈凹曲线分布,其曲率大于已有理论解;随着n的增大,合力作用点位置会降低,降低幅度与墙顶位移呈正相关;合力作用点位置随墙土摩擦角与内摩擦角比值的增大而增大,当墙土摩擦角大于0.7倍内摩擦角时,增长幅度尤为明显。  相似文献   

20.
讨论了库仑主动土压力系数影响因素:墙背倾角、填土内摩擦角、填土坡角、墙背与填土间的外摩擦角等4个参数的合理取值范围.在参数合理取值范围内,以所取某一参数组合为例,采用正交试验分析法,进行了多因素敏感性分析,得出了相应的库仑主动土压力系数对不同参数的敏感度大小关系和敏感度的变化趋势.据此,进一步提出了针对挡土墙工程在设计、施工、运行管理中的相关建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号