首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
研究一种用于波浪补偿系统的超级电容储能装置,通过利用双向DC/DC变换器将直流母线与超级电容连接起来,致力于解决波浪补偿后回馈电能的利用问题。选择三相半桥型的非隔离型双向DC/DC变换器作为传输电路,以直流母线电压的变化为参考,通过设计了双向DC/DC变换器的双闭环控制策略,来达到母线电压稳定的目的。当直流母线电压升高,控制超级电容充电,当直流母线电压降低,控制超级电容放电。实验验证了所提出的基于DSP的双向DC/DC变换器的超级电容储能装置控制策略的有效性。  相似文献   

2.
针对燃料电池发电系统输出特性偏软,动态响应慢以及负载具有随机性、间歇性、波动性等问题,在水下平台混合动力系统中加入了超级电容。采用双向DC/DC变换器作为超级电容充放电主拓扑,设计了基于PI控制器的双闭环控制,实现了母线和超级电容之间能量的双向流动。运用PSIM软件对超级电容正常工作放电和充电2种工况进行仿真。仿真结果表明:通过双向DC/DC变换器可在系统重载时将超级电容存储的电能释放出来,在系统轻载、减速或制动等工况下降回馈再生电能存储至超级电容中,整个过程可以使大功率负载安全地接入系统,减小母线电压振荡,提高能量利用率。  相似文献   

3.
船舶电力推进系统在实际运用中具有明显优势,单一能量型储能装置难以有效应对其中分布式发电单元的输出功率间歇性和负载功率变化随机性波动的情况,给电网稳定运行带来了较大挑战。将锂电池和超级电容通过高执行效能的能量管理策略集合成混合储能装置,则能够很好地解决这一问题。论文通过引入对两种储能装置的充放电过程协调控制的逻辑环节,设计形成完善的四级联动式能量管理系统,建立基于MATLAB/Simulink的太阳能空气动力艇电力推进系统和混合储能装置的能量管理系统的仿真模型,分别对混合储能装置的充放电功率响应、内部功率分配、状态参数控制以及辐照强度同步变化的过程进行数据分析。研究结果表明:混合储能装置充放电控制的最大超调量低于30%,对负载波动的最大调节响应时间小于2.5 s,锂电池持续放电输出功率波动小于5%、放电电压变化率在3.5%以内,超级电容器能够实现对负载功率波动高频分量的瞬时响应。  相似文献   

4.
太阳能光伏系统是将太阳能转化为电能,而太阳能电池电压一般比较小且为非线性。本文采用boost DC/DC升压电路和最大功率跟踪爬山法做了分析设计,结合MATLAB/SIMULINK软件环境,进行相关实验和仿真。  相似文献   

5.
储能锂电池系统在船舶和港口区域的应用和推广是交通水运领域减碳降排的重要措施。锂电池的工作特性决定了热管理在储能系统的重要性,而锂电池充放电过程中温度变化则是热管理系统设计的基点。本文从锂电池原理引出温度监控的重要性,然后针对不同品牌、不同批次的280 Ah磷酸铁锂电芯,选取7个测温区域,在不同环境温度、不同倍率下分别进行充放电温度测试实验研究,试验结果可为锂电池储能系统热管理设计提供支持,同时也可供同行参考。  相似文献   

6.
刘凯  张泽宇  蒋炜 《船电技术》2016,36(5):38-40
本文介绍了一套基于8051微控制器的锂电池保护板系统的设计。本系统针对混合动力船舶的使用环境进行设计,可满足锂电池充放电过程的复杂性的需要,对锂电池单体及整组提供过充过流保护、高低温保护、放电短路保护等智能保护,具有可靠性高、功能强大、性价比高的优点。  相似文献   

7.
本文介绍了光伏逆变器拓扑结构,建立了前级DC/DC变换电路与后级基于电流滞环跟踪控制的电压型逆变电路仿真模型,并对系统进行了仿真分析.通过仿真验证了该光伏逆变器控制策略的可行性.  相似文献   

8.
为了满足某测试设备对多种直流电源的需求,设计了一种能够输出多种直流电压的AC/DC电源模块。该电源模块包含滤波整流电路、DC/DC电路、过欠压保护电路和光耦隔离电路等,介绍了部分电路的工作原理和实现方法,并对电源模块的过欠压保护功能和控制直流电压输出的方法进行了详细地介绍。试验结果表明,该模块具有输出电压稳定、精确度高、可控性好等特点。  相似文献   

9.
移相全桥DC/DC软开关变换器的全数字化实现   总被引:2,自引:0,他引:2  
李志  林磊  邹云屏 《船电技术》2004,24(1):19-22,32
为同时满足大功率低压大电流直流电源的稳态电压精度和起动舰载直升机时的动态响应速度的要求,本文提出了一种基于DSPTMS320F240的移相全桥DC/DC软开关变换器的数字控制实现方法.实验结果证明了方案的可行性.  相似文献   

10.
曹阳  金焘  肖杨婷  王良秀 《船舶工程》2016,38(11):90-95
针对大功率脉冲负载在船舶领域中的应用为背景,对其中全桥隔离DC/DC变换器展开研究。本文基于最小回流功率的双重移相控制策略,通过分析双重移相控制下的软开关条件及其功率传输特性,建立了其动态小信号模型。最后通过Matlab/Simulink仿真实验对控制策略进行验证,实验结果表明了采用基于最小回流功率控制对提高变换器效率的有效性。  相似文献   

11.
分析了锂电池各运行参数的特点,设计了一种用于锂电池智能管理系统的数据采集方法,通过改进的测量方法实时测量锂电池组的单体电池电压、温度及充放电电流,并通过CAN总线传至上层节点,为锂电池的智能管理提供现场数据。着重介绍了该数采单元的设计原理以及软硬件设计。  相似文献   

12.
现代电动汽车通常需要在加速、减速、低速大扭矩、高速恒功率等状态间频繁转换,会引起直流母线电压出现较大的波动。为了控制直流母线电压的稳定,本文提出了一种新型双向DC/DC变流器,分析出不同模式下小信号模型,再根据小信号模型建立变流器控制模型。通过对比其与传统双向DC/DC变流器的差异,结果表明该新型双向DC/DC具有更小的电压应力以及更高的电压增益,有效提高直流母线电压调节的稳定。  相似文献   

13.
正0引言某远洋船舶DC 24 V充放电系统主要给船舶压载系统、舵机报警系统、机舱报警系统等主要设备提供主电源或备用电源,以保证设备的日常工作,是保障船舶正常航行的重要装置。DC 24 V充放电系统具有供电稳定性高、能实现交直流的无缝转换及自动调节充放电电压等优点,在船舶自动化控制中得到快速发展和广泛应用。笔者以DC 24 V充放电系统典型故障为例,详  相似文献   

14.
陈瑞 《船电技术》2015,35(5):14-19
大容量充放电装置是一种满足大型舰船装备需求的新型装置。论文给出了一种改进型软锁相环(SPLL)的设计方法,阐述了基于该SPLL的可逆SVPWM整流器在大容量充放电装置中的应用方案,该方案能够在电网电压发生畸变及不平衡条件下快速、准确地锁定电网电压相位,并大大提高大容量充放电装置的充放电性能和效率。仿真结果验证了方案的可行性和有效性。  相似文献   

15.
针对三端口双向DC/DC变换器在船舶电网中的应用,对其能量控制展开研究。以实现最小系统损耗为目的,对移相控制下的功率与移相比之间的关系进行分析,从而确定系统零循环功率时的移相范围,并通过解耦控制实现最小损耗。通过Matlab/Simulink仿真试验对控制策略进行验证,结果表明零循环功率控制可有效减小系统损耗。  相似文献   

16.
针对光伏并网系统输出功率的间歇性和随机性会降低船舶电力系统运行稳定性的问题,采用超级电容作为储能,使船用光伏并网功率平缓输出.分析超级电容特性和光伏系统的构成,建立光伏电池阵列和基于扰动观察法的输出最大功率点追踪(Maximum Power Point Tracking,MPPT)控制模型,由超级电容和双向DC/DC变...  相似文献   

17.
锂电池组容量一直是制约其广泛应用的重要因素,因此市场迫切需要具备主动均衡充放电模块的管理系统,这样锂电池组在完成充电后进行电池组合,即可实现电池组的容量最大化,延长电池的使用寿命。基于此,本文就重点探究锂电池管理系统的设计方案。  相似文献   

18.
闫石  沈爱第  高迪驹 《中国水运》2014,(11):173-175
针对传统电力推进制动过程中对直流母线电压的影响,制动电阻消耗全部制动能量造成浪费的问题,文中在研究了混合动力船制动回馈机理的基础上,采用锂电池作为制动能量的储能装置,通过双向DC-DC变换器为混合动力船舶提供推力或吸收制动过程的暂态能量,分析锂电池储能系统充放电控制策略,搭建仿真系统.结果验证了锂电池储能系统能够维持直流母线电压稳定,制动能量得到回收.  相似文献   

19.
针对燃料电池船的电能质量品质不高、蓄电池使用寿命短等问题,设计了由超级电容、磷酸铁锂电池组成的复合储能系统,并提出了基于功率分流式的能量管理策略。在MATLAB/Simulink环境下建立系统仿真模型,并采用自适应粒子群算法调用仿真模型,对复合储能系统的容量配置与能量管理策略的参数进行联合优化。仿真结果表明:优化后的复合储能系统可以满足船舶典型工况需求,并且能够缓冲负载波动对燃料电池与磷酸铁锂电池的冲击,使燃料电池工作在高效率区间,机动工况下船舶能量效率提高了3.17%;磷酸铁锂电池的充放电过程得到优化,能延长其使用寿命;母线电压波动减小,提高了电能质量。  相似文献   

20.
《江苏船舶》2017,(5):23-25
主要阐述了在船舶供电系统中加入双向DC/AC储能系统的作为应急电源的意义和作用,搭建了实验平台对双向DC/AC的功能进行验证,通过对相关波形的分析指出双向DC/AC储能系统具有快捷、智能以及使用寿命长等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号