首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
高速公路小客车驾驶员安全注视特性分析   总被引:1,自引:0,他引:1  
为了对高速公路设计与运营安全性评价提供理论依据,基于人-车-路协同过程中的驾驶员视觉注视特征,选取双向四车道高速公路453个线形组合路段,对13名小客车驾驶员在路面范围内的动态视觉注视点位置进行研究,分析不同运行速度下驾驶员在不同线形组合路段路面范围内的注视点分布规律,得出驾驶员受不同运行速度和线形条件影响时在路面上的注视点集中区域特点,提出基于驾驶员行为特征的驾驶期望视距概念,并建立了不同运行速度下驾驶期望视距的计算模型.研究结果表明:驾驶期望视距与车辆运行速度和平曲线半径相关;当道路平曲线半径小于等于800 m时,驾驶员的视野会随运行速度的提高受到限制,需采取适当限速措施以保证行车安全.  相似文献   

2.
在贵州省G246公路小半径弯坡路段开展大型载货汽车和小汽车驾驶员自然驾驶试验,基于Begaze软件与统计学方法,分析了两类驾驶员注视点分布特征与小半径弯坡路段转弯方向、半径、坡度的关系;研究了左转、右转方向驾驶员瞳孔直径、信息获取能力与速度的关系。研究结果表明:大型载货汽车驾驶员在小半径弯坡路段中行驶时,主要关注车头前方15~25 m区域,对后方车辆关注度不足;小汽车驾驶员关注的区域更远,会关注对向来车和道路线形走向;转向和曲线半径是影响驾驶员关注点的主要因素,左、右转时驾驶员主要关注道路中央标线、右侧道路边线,且应着重加强半径小于30 m弯坡路段的视觉引导有效性;大型载货汽车驾驶员过弯时瞳孔直径和信息获取能力的峰值位置与弯道中央并不重合,现有将凸面镜等提示性施设设置在弯道中央的处理措施并不适宜大型载货汽车。  相似文献   

3.
基于眼动仪的驾驶员视点分布特性研究   总被引:1,自引:0,他引:1  
张杰 《湖南交通科技》2012,(4):153-155,170
驾驶员眼动特征能较好地表征驾驶员对视觉信息的加工过程,通过获取驾驶员行车过程中注视点的变化得到驾驶员在不同路段的视点特性。通过运用智能眼动仪,以高速公路驾驶员的视点变化为研究对象。通过将高速公路进行合理的分段,最终得到驾驶员在不同路段下的视点分布特性,发现驾驶员视点在直线路段主要集中在中间区域,而在转弯路段主要集中在中间区域和弯道的内侧,在隧道路段,主要集中在中间区域和下方区域。通过对眼动数据研究得出结论:当平曲线半径小于600 m时,建议对标志进行优化以保证驾驶员能准确获取道路信息,当平曲线半径小于300 m时,建议改善路侧环境以缓解驾驶员的紧张程度。同时,根据隧道段的视点特性,提出了一定的改善措施。  相似文献   

4.
为探究信号交叉口处不同信号灯显示状态对公交车驾驶员视觉特性影响规律,搭建由眼动仪、行车记录仪、电脑和电源转换器等构成的实验平台,采集信号交叉口处公交车驾驶员的眼睑闭合度、眨眼持续时间、注视点位置与注视次数、眨眼频率等视觉特性指标.运用统计分析方法对实验数据进行相关性分析,得到信号交叉口处不同灯色状态下公交车驾驶员视觉特性变化规律.结果表明:随着车辆逐渐接近交叉口,驾驶员眼睑闭合度逐渐变小,眨眼频率逐渐增加;进入交叉口前驾驶员注视点集中在信号灯处,较少关注两侧车辆;不同灯色状态下驾驶员眨眼持续时间变化范围与变化规律均存在明显差异;驾驶员在通过信号交叉口时,注意力集中,存在抢绿灯行为.  相似文献   

5.
驾驶员昼间动态环境暖色调障碍物空间距离判识规律   总被引:3,自引:0,他引:3  
随机选取32名驾驶员,获得绝对距离和相对距离判识数据.通过数据统计和回归分析,分析了驾驶员在地面动态环境下,对暖色调障碍物空间距离判识变化的定量规律.建立了障碍物在25、75、125 m 3种距离状态下,空间绝对距离与相对距离判识变化的6种数学模型.分析结果表明:在车辆行驶深度方向,驾驶员对暖色调障碍物空间绝对距离判识的准确性随距离增加而下降,相对距离判识准确性高于绝对距离;随车辆运行速度的增加,空间距离判识的准确性不断下降,且两者之间呈负指数变化关系;6种数学模型的相关系数不小于0.941,拟合度良好.  相似文献   

6.
高速公路长隧道入口段驾驶人视觉特征变化   总被引:1,自引:0,他引:1  
为减少高速公路隧道入口交通事故,利用实际道路试验,研究驾驶人在隧道入口段的视觉特征.实验记录行车中驾驶人视觉特征参数,运用神经网络和回归方法,通过程序计算和统计分析实测数据,以及模拟视觉特征参数变化,建立驾驶人注视时间、注视次数、扫视幅度等变化的数学模型.结果表明:在接近隧道人口过程中,驾驶员注视时间逐渐增加,注视次数减少,眼动扫视幅度减小;在车辆由远处不断接近隧道入口过程中,驾驶人注视点逐渐由正前方向右侧过渡,出现右侧注视点增加的情况;在车辆进入隧道后,注视时间出现先减少后增加,注视次数增加,扫视幅度增加的规律.  相似文献   

7.
驾驶员行车紧张度评价试验   总被引:1,自引:0,他引:1  
为了研究道路条件对驾驶紧张程度的影响,选择了33名驾驶员,选用驾驶员心率、眼球移动角速度和注视点分布范围3项测试指标,进行了多车型多工况实车试验.采用心电测试仪和眼动仪采集了3项测试指标试验数据,并进行回归分析,建立了不同车型的驾驶员测试指标隶属于不紧张区域、较紧张区域和很紧张区域的隶属度函数.在车速为80 km·h-1,侧向余宽为1.2 m的行车工况下,计算了各车型测试指标的隶属度.试验结果表明:大型车驾驶员3项测试指标的隶属度均属于较紧张区域,中型车驾驶员3项测试指标的隶属度均属于不紧张区域,与实车试验的驾驶员感受评价相符合.  相似文献   

8.
跟随车安全距离的分析   总被引:26,自引:2,他引:26  
通过对驾驶员的反应能力的量化、速度判断过程的分析和对诸如饮酒、服药、电话干扰及疲劳驾驶等外部因素影响下驾驶员行为与跟随车与引导车行驶一致性的研究 ,计算与分析行车时的安全距离 ,寻求既可避免发生追尾碰撞事故 ,又不影响道路通行能力的安全距离恰当值 :当驾驶员和车辆状况良好时 ,行车距离保持在速度 (以 m/s为单位 )的 1 /2以上时 ,才可能安全 ;当驾驶员和车辆状况不良时 ,行车距离保持在速度的二倍以上时 ,才安全。  相似文献   

9.
为研究山区弯道景观对行车安全的影响,构建了仿真流程,研究了车辆横向滑移事故判断方法、驾驶员前方视野范围内障碍物或车辆产生方法、驾驶员视距计算及仿真车辆安全状态判断方法;用VB语言编写仿真程序,仿真分析了不同车速、弯道半径、景观位置对车辆运行安全性的影响.研究结果表明;设计车速为60 km/h且景观至路边距离相同时,大半径弯道较小半径弯道的危险概率减少约58%;曲率半径相同时,较高设计车速的道路景观对行车影响较小,中半径弯道设计车速为80 km/h较60 km/h的危险概率减少约33%.  相似文献   

10.
采用虚拟道路行驶仿真方法,在具有不同路宽的弯道上,进行了小客车行驶试验,分析了通道宽度与不同的弯道半径、转角相组合时其变化对行驶轨迹和速度的影响.研究结果表明:当弯道转角在20°~50°时,通道变宽能使轨迹半径和速度明显地、近乎线性地增加,其中受影响最大的是转角为20°、半径低于200 m的弯道.当通道宽度从2 m增加...  相似文献   

11.
以驾驶员的视点变化为研究对象,利用Dikablis智能眼动仪,通过在选取路段进行的实车试验,获取驾驶员在通过无信号控制路段行人过街横道线时的眼动参数与注视行为特性。研究结果表明,驾驶员在通过人行横道时,白天和夜间视点在中心区域的注视时间比分别占到了34%和51%,在右侧区域占到了45.3%和34.7%。从正常路段向人行横道过渡时,白天瞳孔面积的变化率达到44.4%,夜间变化率达到26%。正常路段的瞳孔面积夜间相比白天变化率达到65.3%,人行横道处变化率达到67.4%,与白天相比驾驶员的紧张程度高。  相似文献   

12.
为解决山区公路中驾驶视觉信息量难以量化的问题,对驾驶视野图像进行分割,根 据HSV颜色模型,提取视野图像的色调、饱和度、亮度值,再结合车速值,在驾驶视觉心理负荷的基础上,提出山区公路路域环境下的驾驶视觉信息量计算方法.通过实车实验,进行数据采集,并验证计算方法.计算结果表明,在半郁闭型空间行驶时,接收的视觉信息量最大;在郁闭型空间中,接收的信息量最小.计算结果与被试实际感受具有一致性,说明本文提出的驾驶视觉信息量计算方法具有可行性,可为路域环境的合理布设提供一定的技术参考.  相似文献   

13.
为解决山区公路中驾驶视觉信息量难以量化的问题,对驾驶视野图像进行分割,根 据HSV颜色模型,提取视野图像的色调、饱和度、亮度值,再结合车速值,在驾驶视觉心理负荷的基础上,提出山区公路路域环境下的驾驶视觉信息量计算方法.通过实车实验,进行数据采集,并验证计算方法.计算结果表明,在半郁闭型空间行驶时,接收的视觉信息量最大;在郁闭型空间中,接收的信息量最小.计算结果与被试实际感受具有一致性,说明本文提出的驾驶视觉信息量计算方法具有可行性,可为路域环境的合理布设提供一定的技术参考.  相似文献   

14.
基于视觉适应性的公路隧道限速研究   总被引:1,自引:0,他引:1  
通过分析隧道对驾驶员视觉、心理的影响,得出车辆通过隧道时车速的变化情况,进而确定了隧道限速段的长度。利用瞳孔面积变化速度与行车安全关系的定量分析,得出基于视觉适应能力的隧道进出口安全行车的临界速度,结合车辆在隧道限速段内的速度变化情况及隧道本身条件确定了保证行车安全的隧道限速值。  相似文献   

15.
为获取驾驶员行驶状态信息与监控行车状况,通过车载CCD图像传感器获得序列图像,应用数字图像理解和计算机视觉技术,建立摄像机的透视投影模型和汽车行驶轨迹状态模型,根据平面图像上的点推导出车辆在空间道路上的实际位置,对车辆行驶过程中相对道路标线的行驶轨迹进行研究。该方法获得的行驶轨迹曲线能够正确判断驾驶员压线行驶、越线行驶与逆向行驶等违章行为,是判别驾驶员行驶状态的有效方法。  相似文献   

16.
预瞄跟随理论和驾驶员模型在汽车智能驾驶研究中的应用   总被引:3,自引:0,他引:3  
根据预瞄跟随理论及驾驶员的开车行为特性 ,指出汽车智能驾驶与驾驶员操纵行为的内在一致性——汽车智能驾驶系统的控制特性与熟练驾驶员的驾驶行为特性基本一致。结合驾驶员操纵行为模式将汽车智能驾驶系统划分为信息感知、轨迹决策和操纵控制三个部分 ,并一一加以具体分析 ,利用系统模糊决策理论对几种汽车行驶的典型工况进行了智能车辆方向控制仿真计算。理论分析和仿真结果表明预瞄跟随理论为智能车辆的研究提供了一个可行的研究途径 ,按照该理论建立的驾驶员方向控制模型可以直接应用于智能车辆控制算法的研究开发  相似文献   

17.
车辆无人驾驶是智能交通系统的一个重要部分,其目标是开发在高速公路和城市道路环境下的辅助驾驶系统,旨在帮助乃至取代驾驶员,实现车辆自动控制和自动驾驶,减少交通事故发生,提高道路交通系统的效率,因此提出了一种基于机器视觉和模糊控制实现智能车辆自主行驶的方法. 该方法以CMOS摄像头为路径识别传感器,通过图像分析提取车道中心线,并引入速度反馈,形成闭环控制,建立一个由两个模糊控制器组成的分级模糊控制器控制车辆转向,并使用模糊控制代替传统的PID速度控制来控制速度. 和常规的PID算法及模糊控制算法相比,改进的模糊控制算法使智能车在道路上更快速、平稳地运行,并且在转弯处的超调更小.  相似文献   

18.
车辆无人驾驶是智能交通系统的一个重要部分,其目标是开发在高速公路和城市道路环境下的辅助驾驶系统,旨在帮助乃至取代驾驶员,实现车辆自动控制和自动驾驶,减少交通事故发生,提高道路交通系统的效率,因此提出了一种基于机器视觉和模糊控制实现智能车辆自主行驶的方法. 该方法以CMOS摄像头为路径识别传感器,通过图像分析提取车道中心线,并引入速度反馈,形成闭环控制,建立一个由两个模糊控制器组成的分级模糊控制器控制车辆转向,并使用模糊控制代替传统的PID速度控制来控制速度. 和常规的PID算法及模糊控制算法相比,改进的模糊控制算法使智能车在道路上更快速、平稳地运行,并且在转弯处的超调更小.  相似文献   

19.
Autopilot vehicle is an important part of intelligent transportation systems. The objective is to develop the driver assistance systems on highway and urban road, to help or even to replace the driver, which may reduce traffic accidents and improve the efficiency of traffic system. A method based on machine vision and fuzzy control is proposed to realize intelligent vehicles' autopilot. It uses the CMOS sensor as its path recognition device to draw its lane centerline through image analysis. Taking the feedback speed as the additional input, the study forms the closed-loop control and establishes one graduation fuzzy controller which controls vehicle direction with two fuzzy controller combinations and replaces traditional PID control vehicle speed by fuzzy control. Compare with the conventional PID algorithm and the fuzzy control algorithm, the improved fuzzy control algorithm ensures a high speed and steady running of intelligent vehicle with smaller over modulation in corner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号