首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
武汉杨泗港长江大桥主桥为主跨1 700m的单跨双层钢桁梁悬索桥。该桥2个桥塔均采用沉井基础,沉井下部为钢壳混凝土结构,上部为钢筋混凝土结构;锚碇采用外径98m、壁厚1.5m的圆形地下连续墙基础;桥塔为钢筋混凝土门式结构,1号和2号塔高分别为231.9m和243.9m,采用C60高性能混凝土浇筑;主缆采用直径6.2mm、标准抗拉强度1 960MPa的锌铝合金镀层高强钢丝;加劲梁采用华伦式桁架全焊接结构。在该桥施工中,沉井隔舱区域硬塑黏土层采用搅吸机+高压射水取土的工艺施工,刃脚盲区采用爆破+斜向弯头吸泥机取土的工艺施工;地下连续墙采用液压成槽机和双轮铣槽机进行槽段成槽施工,内衬及填芯混凝土采用逆作法施工;桥塔采用液压爬模施工,通过优化混凝土配合比、选择高压输送泵将C60混凝土一泵到顶;主缆钢丝为国产新材料,按4个阶段组织生产;主缆采用索股混编,PPWS法架设,利用双线往复式牵引系统进行索股牵引;加劲梁采用整体节段制造、吊装技术施工,钢梁节段采用缆载吊机从跨中向桥塔方向逐段吊装。  相似文献   

2.
南京长江第五大桥主桥索塔采用钢-混凝土组合结构,是国内首次在大跨径桥梁结构中应用该结构。钢-混凝土组合结构在设计上有许多创新点,在实际施工过程中需要技术攻关。本文结合南京长江第五大桥南边塔首节段钢壳安装定位施工,对索塔的首节段的吊装、钢筋连接及混凝土浇筑关键技术进行阐述。  相似文献   

3.
张家界大峡谷玻璃桥为主跨430m的空间索面地锚式悬索桥。根据该桥结构特点,依据其地形及地质条件,桥塔群桩基础采用人工挖孔施工,独柱式钢筋混凝土桥塔采用小块木模板拼装、分节段浇筑法施工;西岸隧道式锚碇及东岸重力式锚碇采用机械开挖,锚碇混凝土采用分层浇筑;利用猫道上方的天缆牵引主缆索股,利用平行架设横向对拉技术调整主缆的空间线形;采用新型对拉工具直接拉近主缆间距,安装索夹并调整其空间角度;加劲梁的纵、横梁在场内制作后现场拼装成完整节段,采用缆索吊装法从两侧向中间对称吊装,与吊索安装同步进行;桥面露空处铺设大尺寸透明钢化玻璃,桥面非露空处铺设钢化防滑玻璃。  相似文献   

4.
为寻求桥塔施工速度提升的发展方向,结合国内部分大跨度斜拉桥钢筋混凝土桥塔施工实践,总结桥塔快速施工技术,包括桥塔分节高度、塔吊配置、钢筋和混凝土工序,以及上(下)横梁施工、上塔柱锚固区快速施工技术和塔柱施工控制技术。通过总结分析,因分节高度限制、塔吊性能不足、钢筋和混凝土作业工法单一、大型锚固构件吊装困难等,导致当前桥塔施工速度提升缓慢。基于此,以沪苏通长江公铁大桥桥塔施工实践为背景,按预拼吊装和结构优化2个方向分部位提出快速施工方案构思,包括下塔柱采用钢筋分节段整体绑扎或钢筋混凝土节段分段预制后吊装,下横梁采用分块预制吊装+湿接头方案,中、上塔柱采用钢壳混凝土组合结构等方案构思,以期为桥塔快速施工技术创新提供参考。  相似文献   

5.
巢马城际铁路马鞍山长江公铁大桥主航道桥为(112+392+2×1 120+392+112) m三塔钢桁梁斜拉桥,Z3号桥塔为超高多肢钢-混组合塔,高308 m。上塔柱钢结构高87.5 m,分13个吊装节段,最重505 t;中、下塔柱混凝土结构高217.5 m,分38个节段液压爬模施工;钢-混结合段高3 m,内部采用PBL键+剪力钉+高强度钢锚杆+高强度混凝土结构形式。在中塔柱设置钢管临时横撑控制塔柱线形及应力;下横梁采用落地支架法分层施工,与对应塔柱同步浇筑;钢-混结合段混凝土采用C60细石补偿收缩混凝土+高强度灌浆料,保证了混凝土施工质量;采用工厂“2+1”立体匹配制造、“提升站+运输栈桥”钢塔节段转运等技术,并研制15 000 t·m超大型塔吊,实现了钢塔柱大节段的制造、整体滩地运输和吊装;钢塔节段间采用栓焊组合连接形式,通过设置工艺隔板、双面坡口等措施控制了钢塔焊接变形;利用定位桁架临时锁定钢塔合龙段实现了钢塔的精确合龙,定位桁架受力及变形均满足要求。  相似文献   

6.
黄冈公铁两用长江大桥主桥为主跨567 m的钢桁梁斜拉桥,桥塔为H形混凝土结构.该桥桥塔塔柱采用液压爬模施工;下横梁采用落地式支架施工,与下塔柱节段混凝土同步浇筑;中塔柱施工时设置2道临时横撑,以改善塔柱施工阶段的受力;上横梁采用梯形桁架施工,与塔柱混凝土异步施工,上、下横梁混凝土均分2层浇筑.采用MIDAS有限元软件建模对桥塔施工过程进行分析,结果表明:上、下横梁混凝土分层浇筑时混凝土应力满足规范要求,且可有效降低现浇支架荷载;临时横撑的设置保证了施工阶段桥塔应力及位移均满足要求;上横梁梯形桁架支点处塔柱局部应力满足要求.  相似文献   

7.
为研究波形钢腹板PC连续梁桥在异步悬臂施工不同工序下的受力性能及施工工期,以主桥长360m的奉化江大桥为背景,采用有限元软件建立该桥箱梁的1~4号节段模型,分析按不同顺序浇筑箱梁顶、底板混凝土,吊装波形钢腹板时箱梁结构受力,并比较所需工期。结果表明:异步悬臂施工时,PC梁箱室中间小部分顶板混凝土处于受拉状态;波形钢腹板位移变化较大。若仅考虑结构受力,先浇筑前一节段顶板,再浇筑本节段底板,最后吊装后一节段波形钢腹板的方案施工期间挠度最小,受力最优;若综合考虑结构受力性能和施工周期的影响,同时浇筑前一节段顶板和本节段底板,最后吊装后一节段波形钢腹板的施工工序最优。  相似文献   

8.
南沙大桥东涌互通主线二桥为一联五跨连续刚构桥,下穿、上跨多条既有线。该桥主梁采用节段悬臂浇筑工艺施工,其22至23号墩上跨既有C匝道,施工净空仅29 cm。为在不影响C匝道运营的前提下进行跨线施工,提出22至23号墩采用模架结构进行悬浇跨线施工。模架结构由钢壳和桁架两部分组成,其中,钢壳既作为施工阶段混凝土浇筑用模板,又作为混凝土箱梁结构的一部分,还兼做跨线施工防护棚。施工时,22号墩广州侧、23号墩东莞侧梁段采用挂篮进行节段悬浇施工;22号墩与23号墩间梁段采用模架结构进行节段悬浇施工,待跨中合龙段施工后,拆除墩身两侧的临时支撑、挂篮和桁架,完成跨线施工。  相似文献   

9.
《公路》2018,(12)
秀山跨海大桥副通航孔桥为81m+4×153m+81m六跨连续—刚构变截面箱梁,路线位于超高曲线段,采用短线法节段预制,体内、体外预应力混合配束,预制节段最大高度9.233m,进行分块设计便于浇筑与运输吊装,本桥基础多位于无(浅)覆盖层裸露倾斜基岩,施工难度大,9、10号桩基进行优化设计并对上部施工方案进行调整。模板系统设计、混凝土浇筑质量控制、测量及线形精度控制是预制施工重、难点。桥位潮汐为不规则半日潮,节段运输定位及悬臂吊装必须选在时间较短平潮期进行,采用桥面吊机悬臂拼装,风-浪-流作用对桩基施工及悬臂拼装工作影响大,由于上部施工措施复杂化增加节段施工控制难度,重点介绍本桥大跨径曲线节段预制梁设计与施工工程实践。  相似文献   

10.
赣州市集结大桥主桥为外包钢壳混凝土拱形桥塔斜拉桥,为确保钢混组合拱形桥塔节段拼装精准合龙,采用MIDAS Civil软件建立拱形桥塔空间几何模型,分析外包钢壳和混凝土湿重对桥塔变形的影响,采用切线初始位移法对桥塔施工阶段位移进行预测,通过求解制造线形对桥塔待拼装节段进行预偏修正,并与实测数据进行对比。结果表明:外包钢壳能显著减小桥塔变形;施工阶段桥塔变形主要由混凝土湿重引起,临时支撑能有效减小混凝土浇筑产生的横向变形。基于切线初始位移法的几何姿态预测方法能有效预测桥塔拼装全过程几何姿态,实测成桥阶段桥塔各节段最大偏位为6 mm,小于施工控制要求,具有较高的实施精度,可保证成桥状态下桥塔几何姿态的准确性。  相似文献   

11.
针对波形钢腹板PC(预应力混凝土)箱梁桥传统节段悬臂浇筑施工中存在的问题,将波形钢腹板预制装配化施工和异步悬臂浇筑施工工艺相结合,开发一种预制装配化波形钢腹板PC箱梁桥节段悬臂施工方法,将传统工艺中在空中悬臂完成的节段悬臂浇筑及底板与波形钢腹板连接施工作业转变为工厂化预制,降低节段悬臂施工中高空作业工序组织难度,并通过与传统施工工艺工期和经济效益对比分析其推广价值。  相似文献   

12.
刘源  李鸥  林吉明 《世界桥梁》2021,49(2):36-42
浙江秀山大桥主桥为主跨926 m的双塔三跨连续钢箱梁悬索桥,全桥加劲梁共分89个安装节段,标准节段吊装重量212.6 t,最大吊装重量247.1 t.桥址处地理环境复杂、海洋环境恶劣,钢箱梁安装难度大.根据现场实际情况,钢箱梁中跨由跨中向桥塔方向对称吊装,两岸边跨由锚碇向桥塔方向对称吊装,先合龙中跨再合龙边跨.施工过程...  相似文献   

13.
重庆红岩村嘉陵江大桥为(91.4+138.6+375+120+7.8) m公轨两用钢桁梁斜拉桥,桥塔采用门式框架钢筋混凝土结构,塔高202 m。桥塔以红岩片为设计理念,塔柱及横梁均设计为台阶造型,上塔柱锚固段设有用于斜拉索锚固的钢锚箱。塔柱标准节段为6 m,共计36个节段,采用液压爬模分节段施工,在圆弧倒角及造型台阶部位采用定型钢模板,剩余大面部分采用维萨板;塔柱施工至一定高度后在两塔柱之间设置横撑施加预顶力,以平衡塔柱的内倾水平力;上塔柱锚固段钢锚箱采用动臂塔吊吊装,其中首节段钢锚箱采取索导管与钢锚箱箱体分离安装工艺;混凝土采用研发的泵管转动装置浇筑成型。塔梁采取异步施工工艺,先施工塔柱后施工横梁,中横梁采用落地式钢管支架,上横梁采用牛腿支架作为支撑体系。  相似文献   

14.
平潭海峡公铁大桥大小练岛水道桥为主跨336m的双塔双索面钢桁梁斜拉桥。桥塔采用H形钢筋混凝土结构、高152m,桥塔墩采用直径4.4m的钻孔桩基础,采用圆端哑铃形高桩承台;主梁采用带副桁的正交异性板钢桁梁结构,主桁采用N形桁式,桁高13.5m、桁宽15m。该桥基础采用长栈桥和施工平台方案施工;钻孔桩采用KTY4000型液压动力头钻机施工;承台采用双壁钢吊箱围堰施工;桥塔塔柱采用ACF-125型全封闭液压爬模施工,标准施工节段高6m,索塔锚固区采用低回缩环向预应力锚固体系、二次张拉工艺施工。边跨、辅助跨钢桁梁在工厂内组拼成整体大节段,现场采用浮吊整体吊装;墩顶钢梁节段采用浮吊分节段架设;中跨钢梁节段采用1 100t架梁吊机单悬臂架设。  相似文献   

15.
武汉鹦鹉洲长江大桥主桥为(200+2×850+200)m三塔钢-混凝土结合梁悬索桥。为保证该桥的成桥线形和结构受力安全满足设计要求,主缆架设时,提出了考虑温度、跨度和塔顶高程影响的基准索股跨中位置参数影响公式,并采用索股分层定位技术架设一般索股;吊索无应力下料长度计算结果采用正装和倒拆2种计算手段相互验证;加劲梁采用4台缆载吊机,按照"从两中跨靠近中塔开始架设,而后再从边塔向边墩、跨中方向架设"的顺序吊装;混凝土桥面板采用"工厂预制、桥上结合"的方式施工;在加劲梁所有梁段就位、节段间正式连接后,再浇筑混凝土湿接缝;在两主跨各吊装27个加劲梁节段后,主索鞍共分6次顶推到位。采取以上监控技术后,该桥的成桥线形及桥塔偏位均满足要求。  相似文献   

16.
为了总结钢桁架人行景观桥制作及安装施工技术经验,通过制作及安装施工实践,对于钢桁架的制作及安装施工进行了细致的研究与观察,结合现场实际情况采用厂内杆件预制、现场节段拼装、分段吊装的施工工艺,克服施工现场局限、超长超重梁段、铁路沿线施工时间分散等困难,按时保质保量地完成了钢桁架人行景观桥的施工任务。  相似文献   

17.
新建江汉四桥拓宽工程斜拉桥与既有主桥组成"姊妹桥",是一座主跨232m的混合梁独塔斜拉桥。该桥桥塔与边跨主梁同步浇筑施工,主跨单悬臂架设。由于紧邻老桥施工,受地基条件、周边环境、结构特点、工期等限制,对该桥进行施工控制,以优化施工措施。边跨混凝土主梁采用优化支架形式、提高地基承载力、增加局部临时桩等技术措施,控制地基沉降量;跨沿河大道的主梁节段分为5小节段施工,可节省工期约3个月;分2批张拉横向预应力,有利于控制边跨主梁的横向应力与变形。主跨组合梁采用每节段浇筑一次湿接缝的施工工序;主跨施工过程中,分3次在边跨浇筑配重混凝土(18 700kN),用于抵抗主跨二期恒载及活载作用下的负反力。  相似文献   

18.
《公路》2017,(9)
跨海大桥设计多采用高墩大跨的缆索体系形式,对于此类桥梁的墩塔施工,不论是采用混凝土材料进行现场浇筑,还是采用预制钢塔进行现场拼装,其难度往往是影响桥梁整体质量的关键因素。对于整体吊装施工技术,虽然可以缩短工期,节约施工成本,但工程建设条件复杂,塔段超长、超重等不利原因导致施工难度大、危险性高。港珠澳大桥江海直达船航道桥138号墩钢塔成功地采用了预先拼装再海上施工现场整体吊装的施工工艺,该方案克服了海上作业的多种不确定性因素,减小了海上施工的安全风险和对海洋生态环境的污染,确保了工程质量,为今后跨海大桥的高耸桥塔施工提供了宝贵的技术参考。  相似文献   

19.
该文以钢-混凝土叠合梁斜拉桥施工工艺调整为背景,分析单节段循环浇筑湿接缝和滞后一个节段进行湿接缝浇筑对于施工监控的影响,包括对钢梁恒载切线累计位移、制造线形、成桥索力影响等;以施工工艺调整前所确定的钢梁制造线形和成桥索力为目标,允许施工索力在一定区间变化,基于线性规划方法进行了施工索力调整计算。研究结果表明:①叠合工艺调整影响了叠合梁刚度形成过程,如果工艺调整后不进行施工索力调整,则控制点切线累计位移偏差显著,对实例桥梁而言最大达到2.2 m;②如果限定施工索力只在较小的区间变化,则施工索力难以适应原制造线形和成桥索力;如果放松施工索力调整区间,则可以较好地适应;③采用线性规划的方法进行施工索力调整计算,可以较好地兼顾控制点切线累计位移和拉索成桥索力等优化目标。  相似文献   

20.
淮安市京杭运河淮海路大桥改建工程采用单塔斜拉桥方案。桥塔为椭圆形的异型钢拱塔结构,左右塔肢如同人步行的两条腿交错布置,且左右旋转对称。受现场条件限制,桥塔各异形节段只能采用大型履带吊单钩吊装。桥塔施工存在起吊后姿态调整困难、安装过程中节段自重不利影响及极端气候不利影响等诸多问题。为解决单钩起吊后节段姿态控制的难题,采用有限元法对桥塔各异形节段进行吊装过程分析;为了控制异形塔在施工过程中的应力和变形及极端气候下的力学特性,采用ANSYS软件建立异形塔和支架的有限元模型,分别对悬臂拼装法和支架法施工时塔的应力及线形进行了分析。研究结果表明:基于有限元法精确计算出各节段的重心,通过模拟吊点的三维坐标确定吊装时钢丝绳的长度能实现对异形节段单钩吊装姿态的有效控制;采用支架法方案能有效地控制桥塔的应力和线形,并能有效地抵御当地极端天气因素。该项目桥塔已顺利建成,合龙后桥塔线形及应力均符合设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号