首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
泉州湾跨海大桥主桥为主跨400m的双塔分幅式组合梁斜拉桥,采用整体节段悬臂拼装架设,干拼法连接进行主梁节段施工。为研究结构参数对施工过程中结构响应的影响,指导施工控制,采用有限元法建立该桥计算模型,计算施工过程中桥塔弹性模量、钢梁弹性模量、桥面板弹性模量、钢梁重量、桥面板重量等参数对桥塔塔偏、主梁线形、桥面板应力和斜拉索索力的影响。研究结果表明,桥面板及钢梁重量对桥塔塔偏、主梁线形及斜拉索索力影响较大,钢梁弹性模量、桥面板弹性模量及桥面板重量则对混凝土桥面板应力有很大影响,施工过程中需重点控制敏感性参数。该桥采用基于分析结果确定的施工控制原则实施控制,主跨合龙后,成桥实测线形与理论线形、成桥实测索力与理论索力均满足施工控制目标值的要求。  相似文献   

2.
沪苏通长江公铁大桥天生港专用航道桥为(140+336+140) m刚性梁柔性拱桥,主梁为三主桁双层板桁组合结构,采用“先梁后拱,主梁双悬臂拼装,拱肋竖向转体”方案进行施工。为确保成桥线形和内力满足设计要求,采用MIDAS Civil软件建立全桥有限元模型,进行施工全过程和成桥分析,基于无应力状态法开展施工控制。钢梁墩顶节间施工时,设置墩旁托架,利用浮吊拼装;对称悬拼期间,为保证纵向稳定性,采用水袋对边跨进行配重,利用扣塔分别张拉2对扣索以改善钢梁受力并调整钢梁线形;采用预降边支点、4号墩钢梁整体预偏,以及扣索索力调整等措施进行钢梁中跨合龙;拱肋竖转后,主要通过扣索完成拱肋合龙调位;拱肋合龙后,从中间向两边张拉吊杆。经实测,该桥钢梁合龙口相对高差在10 mm以内;拱肋合龙口轴向偏差最大2 mm,相对高差最大1 mm;吊杆索力与设计目标索力偏差均在5%内,满足施工控制要求。  相似文献   

3.
新建常益长铁路沅江特大桥跨石长铁路桥为(32.7+90+90+32.7) m空间双索面钢拱塔钢-混结合梁斜拉桥,以18°小角度跨越既有高铁运营线路。该桥采用先拱后梁方案施工,其中,桥塔采用先竖转再跨线平转法施工,钢主梁采用拖拉法跨线施工。为确保成桥线形和应力满足设计要求,采用MIDAS Civil软件建立有限元模型,对拱塔竖转与跨线平转、钢主梁跨线拖拉、斜拉索张拉及混凝土桥面板浇筑进行施工模拟,提出拱塔顶推力及无应力线形、钢主梁临时扣塔结构与扣索力、混凝土桥面板分段施工、斜拉索三次张拉等控制技术,并将施工中拱塔与主梁的实测应力、线形与理论值进行对比分析。结果表明:拱塔转体施工过程中,拱塔线形与应力实测值与理论值吻合良好;钢主梁拖拉合龙精度控制良好;混凝土桥面板浇筑、斜拉索张拉后,主梁和拱塔的应力、线形实测值与理论值误差均在合理范围内,桥面标高满足无砟轨道铺设精度要求;铺轨后,拱塔和主梁的线形与应力、斜拉索索力等各项指标均良好,大桥整体施工控制精度良好。  相似文献   

4.
为了使团泊新桥(独柱斜塔空间扭面背索混合梁斜拉桥)的成桥线形和索力、应力均达到设计及规范要求,根据该桥结构特点及主要施工过程,确定该桥施工控制以桥塔线形控制为主,索力的确定采用基于正装法及最小二乘法原理的优化方法,该桥斜拉索控制张拉索力的确定分桥塔悬臂施工和体系转换施工2个阶段进行.通过参数识别确定将背索和前索索力作为重点识别的结构参数.桥塔目标线形控制主要通过对塔柱拼装线形控制与索力调整控制来实现.塔柱施工过程中需采用合理的索力张拉顺序保证桥塔施工中及成桥状态的内力安全,桥塔线形控制包括塔柱拼装线形与塔柱整体姿态2部分.团泊新桥成桥后各控制参数满足设计要求.  相似文献   

5.
池州长江公路大桥为主跨828m的双塔双索面混合梁斜拉桥,采用将斜拉索分组集聚式锚固于塔间钢横梁上的新型锚固形式。钢箱施工梁采用悬臂拼装法,边跨预应力混凝土箱梁施工采用支架现浇法。针对大桥集聚式锚固和主梁不对称施工两个特点,应用几何控制法进行施工控制,采取了塔柱偏位和预抬量控制、塔柱应力控制、钢横梁预抬量控制、主梁制造线形及安装线形控制、斜拉索下料长度控制等诸多关键控制技术。成桥后对索塔偏位及应力、主梁线形、斜拉索索力进行了实测,并与理论值进行对比分析,结果表明:结构线形、应力、索力的实测值与理论值较吻合,均满足规范要求;大桥总体控制效果良好。  相似文献   

6.
为保证平行钢绞线斜拉索的张拉精度及锚固性能,并提高张拉效率,以跨径为(242+580+242)m双塔双索面叠合梁斜拉桥——六广河特大桥为例,对斜拉索张拉方案进行优化。原方案以消除结构自重为主,兼顾结构受力,但需反复微调,耗时长且不利于锚固安全;优化方案提高了第二次张拉的索力值,减小当前节段湿接缝压应力储备,以控制下一节段钢主梁拼装时当前节段桥面板及湿接缝应力不超限为目标,并将第三次张拉调整时的单根张拉法改为大吨位千斤顶整体张拉。有限元计算及实施效果显示:采用优化后的张拉方案,施工过程及成桥后主梁应力及线形、斜拉索索力及桥塔偏位均满足规范要求,相对于原方案工期提前40d。  相似文献   

7.
为了使曲线钢箱梁斜拉桥成桥后达到合理的内力和线形状态,以穗盐路斜拉桥为背景,基于无应力状态法,以钢箱梁制造线形为目标,进行全桥施工控制.在确定合理成桥状态下,计算了钢箱梁的制造线形,悬臂拼装时按制造线形夹角进行拼装,并保证合龙段的无应力拼装,则最终成桥必会达到合理成桥状态;讨论了无应力索长的计算方法,用无应力索长差实现全桥调索的一次性完成;该桥的横向效应计算结果表明水平横向弯曲效应明显,弯扭耦合效应并不明显,可按直线桥对主梁进行线形控制.监测结果表明,成桥后索力误差在5%之内,主梁线形满足设计要求,结构内力状态良好.  相似文献   

8.
为了保证葑溪大桥的施工安全和质量,根据预应力混凝土斜拉桥悬臂浇筑和支架现浇非对称施工特点,建立施工控制计算模型,探讨影响主梁线形及斜拉索索力的因素,并制定相应控制措施,对主梁线形、内力、索力、牵索挂篮应力和变形进行有效监控.施工控制结果表明:成桥状态下,主桥轴线实测标高、桥梁应力状态、成桥索力均满足设计要求,挂篮在施工过程中的应力状态及变形情况与试验变化趋势基本一致.  相似文献   

9.
贵黔高速鸭池河特大桥为主跨800m的钢桁-混凝土混合梁斜拉桥,边跨预应力混凝土梁采用挂篮悬臂浇筑施工,主跨钢桁梁采用缆索吊机整节段悬臂拼装。为指导施工,使成桥后的结构线形和内力满足设计要求,采用TDV RM软件建立全桥有限元模型,在施工过程中对桥塔、预应力混凝土梁、钢桁梁的线形和应力及斜拉索索力等进行监控。结果表明:施工过程中结构线形和应力的实测值与理论值均吻合较好,成桥后主梁线形平顺、索力均匀;桥塔线形误差控制在±4cm以内,边跨混凝土梁和中跨钢桁梁标高误差分别控制在±1.1cm、±5cm以内,斜拉索索力误差在±10%以内,均满足设计要求。  相似文献   

10.
江顺大桥主桥为主跨700m的双塔双索面混合梁斜拉桥,该桥钢箱梁采用悬臂拼装施工,边跨预应力混凝土箱梁采用支架现浇法施工。为保证成桥后的线形及内力满足设计要求,采用MIDAS Civil软件建立全桥杆系有限元模型,并基于无应力状态法对该桥进行施工控制。在施工控制中,采取了桥塔应力及线形控制、塔内斜拉索锚固块预抬量及钢锚梁预抬量控制、主梁的钢箱梁制造线形及施工线形控制、斜拉索的下料长度及施工中斜拉索索力控制等关键控制技术。成桥后对桥塔应力和偏位、主梁测点高程、斜拉索索力的实测值与理论值进行对比分析,结果表明:以上各数据的实测值与理论值均吻合较好,误差均在合理范围内,满足设计要求,成桥状态良好。  相似文献   

11.
珠海市洪鹤大桥主桥磨刀门水道主航道桥为主跨500 m的钢-混凝土叠合梁斜拉桥,主梁高3.5 m,宽34.9 m。以跨中合龙段为界,由两个施工单位采用不同的施工方案进行施工。8~#主塔塔处和6~#、7~#、10~#墩顶附近钢梁全部采用无支架施工,9~#主塔塔处和11~#墩顶附近钢梁采用有支架施工方案。为确保最终成桥状态满足设计要求,在钢梁预制前计算了主梁的无应力线形和安装线形,安装阶段确定了以高差控制拼装、以索力和标高进行双控的施工控制方法,并明确了误差来源、对支座进行了提前预偏。通过对悬臂拼装的施工全过程的控制,该桥线形得到了良好的控制效果,已经顺利合龙。  相似文献   

12.
新建京港高铁安九段鳊鱼洲长江大桥南汊航道桥采用主跨672 m的双塔双索面钢箱混合梁交叉索斜拉桥,主跨及北辅助跨钢梁采用悬臂拼装架设,南辅助跨钢梁采用顶推施工,锚跨预应力混凝土梁采用支架现浇。该桥采用“多工序同步作业”,即双悬臂阶段塔柱与钢梁悬臂架设同步,单悬臂阶段桥面附属结构与钢梁架设同步,成桥后铺砟施工与调索同步。为了确保成桥内力及线形满足设计要求,采用3D Bridge有限元软件建立大桥计算模型,基于无应力状态法开展施工控制。针对钢梁自重在恒载中占比小、初期道砟容重低等特点,结合施工关键工序研究,采取钢梁无应力匹配制造、现场无应力安装、边跨与主跨主动合龙、斜拉索塔端锚杯加长设计、单节段内2对索异步张拉、交叉索分步安装、成桥后分2次调索等关键控制技术,实现了大桥精准、快速合龙,确保了“多工序同步作业”下的结构受力安全和线形控制。施工控制结果表明:考虑温度修正后实测线形与设计线形吻合,索力偏差小于10%,满足设计要求,成桥状态良好。  相似文献   

13.
港珠澳大桥青州航道桥为(110+236+458+236+110)m的斜拉-连续组合体系双塔双索面钢箱梁斜拉桥,有索区主梁采用悬臂拼装方案施工,无索区主梁采用整体吊装方案施工,两侧次边跨及中跨均设1个合龙段。为保证主梁合龙施工精度及质量,结合结构体系特点,次边跨合龙采用顶推+配切合龙的方法,按照先合龙、后张拉合龙段斜拉索的工序进行合龙施工;中跨合龙采用配切合龙的方法;在合龙施工中,采取了免压重合龙观测技术,并采取折线配切方法进行合龙段精细配切。该桥主梁合龙后,次边跨及中跨合龙口最大高差分别为6mm和1mm,轴线偏差均在5mm以内,焊缝宽度均为10~15mm。实践结果表明:该桥合龙施工技术切实可行,施工简便,合龙精度满足施工要求。  相似文献   

14.
贵黔高速鸭池河特大桥为主跨800m的钢桁-混凝土混合梁斜拉桥,中跨钢桁梁采用"N"形桁架。受地形、运输和工期等条件限制,该桥采用缆索吊机进行16m长钢桁梁节段整体悬臂拼装。施工中,在边跨增设主动张拉的背索,以抵消缆索吊机对该桥变形的影响;优化接头处高强螺栓施工的时间和顺序,以防止新节段安装时高强螺栓受剪;重视钢桁梁节段现场的预拼装、测量和误差调整工作,以确保16m长节段拼装精度;采用等值张拉法和群锚千斤顶张拉,以实现钢绞线斜拉索的索力均匀性和整体索力控制;优化斜拉索施工索力,以实现合龙口姿态的调整,采用温度自然合龙法,以实现高精度合龙。鸭池河特大桥合龙后主梁线形平顺,施工误差满足规范要求,该桥已于2016年7月建成通车。  相似文献   

15.
琅岐闽江大桥主桥为(60+90+150+680+150+90+60) m 七跨连续半飘浮体系双塔双索面斜拉桥,主梁为栓焊结构钢箱梁,采用悬臂拼装法施工,中跨合龙段长12 m ,合龙段自重约170 t 。为了使大桥能够高精度顺利安全合龙,且成桥后结构内力、线形状态达到预期目标状态,基于无应力状态法原理的控制思想,确定中跨采用双边吊梁、无劲性骨架锁定、顶推法进行合龙。采用 MIDAS Civil 2011对合龙关键工序进行详细计算分析,得到合龙顶推力、顶推位移限值等关键控制参数;分析了顶推过程中的索力、线形变化规律,以验证结构合龙安全可靠;分析得到合龙段无应力长度较小的改变对成桥目标状态影响较小。工程实践表明采用该方法进行合龙控制是可行的,桥梁合龙后内力状态与设计目标一致。  相似文献   

16.
为了解双塔联体分幅斜拉桥施工控制参数对结构的影响,结合滨海新城曹娥江大桥主桥(主跨300m的四索面双塔联体分幅斜拉桥)工程,采用有限元法分析了考虑两幅桥不同步施工、边跨现浇段支撑刚度以及施工过程斜拉索垂度等参数下结构的内力和线形。结果表明:两幅桥彼此独立时,左右幅不同步施工对结构内力和线形基本无影响;两幅桥不同步施工对塔顶纵向位移、中跨主梁竖向位移以及边跨索力有一定影响,主梁边、中跨合龙误差分别可达7mm、10mm;边跨现浇段支撑刚度对施工过程以及成桥状态的内力和线形均有明显影响;长悬臂施工状态,主梁混凝土浇筑一半时,斜拉索垂度对结构内力和线形的影响显著。  相似文献   

17.
贵黔高速鸭池河特大桥为主跨800m的混合梁斜拉桥,中跨为钢桁梁,边跨为预应力混凝土箱梁。该桥采用缆索吊机进行钢桁梁节段整体悬臂拼装施工,中跨钢桁梁采用自然合龙法施工。施工中,采用优化斜拉索张拉索力的方法实现合龙口姿态的调整,即对22~24号斜拉索分别按70%、60%和50%的成桥索力张拉,合龙后再补张拉,以满足合龙线形要求;对钢桁梁合龙口的间距、标高、轴线、气温和弦杆温度等进行48h连续观测,确定合龙段的合龙温度和放置温度分别为17℃和19℃,上、下游弦杆的配切长度分别为8 114mm和8 136mm;采用钢管和工字钢等临时支撑固定合龙段,以防止其运输和吊装过程中变形。该桥已完成高精度合龙,合龙后主梁线形平顺,误差满足规范要求。  相似文献   

18.
为解决系杆拱桥在钢拱肋和钢梁拼装过程中线形的确定和控制等问题,通过基于无应力状态法的系杆拱桥施工控制方法,利用系杆拱桥构件单元的无应力长度和无应力曲率,建立了拱桥施工中间过程与最终成桥状态之间的联系,避免了系杆拱桥成桥后繁琐的调索步骤,并以某在建系杆拱桥为例,采用MIDAS Civil有限元软件建立全桥数值模型,对该桥施工过程进行模拟。结果表明:基于无应力状态法的系杆拱桥线形及索力控制方法计算准确,可行性好,实测拱肋、钢主梁线形偏差以及吊杆索力偏差均满足规范要求,同时可节省工期。  相似文献   

19.
宁波中兴大桥为(64+86+400+86+64)m的单索面矮塔斜拉桥,中跨有索区钢箱梁采用悬臂拼装方案施工,设置一个合龙段。为保证主梁合龙施工精度及质量,结合结构体系特点,中跨合龙采用配切合龙法。在合龙施工中,采取了免压重合龙观测技术、折线配切方法进行合龙段精细配切,并采用对拉螺栓对合龙段主梁快速临时锁定。该桥主梁合龙后,中跨合龙口最大高差分别为6 mm,轴线偏差在9 mm以内,焊缝宽度均为10~17 mm。实践结果表明,该桥合龙施工技术切实可行、施工简便,合龙精度满足施工要求。  相似文献   

20.
《公路》2017,(10)
为了解决钢管拱桥施工中的钢箱梁落梁问题,建立了梁-拱-索三控方法的优化模型,以主拱圈和主梁的线形状态以及吊杆索力三者与设计值相对误差之和为目标函数,钢箱梁顶升高度为设计变量,在施工阶段采用坐标轮换法和抛物线法进行求解,基于落梁法施工原理,以越南钢管拱桥-龙桥为工程实例,采用梁-拱-索三控方法对其落梁法施工控制进行优化研究,结果表明:主拱圈和钢箱梁的线形、应力的实测值与理论值变化趋势一致,主拱圈和钢箱梁的位移最大误差分别为18mm和23mm,最大应力分别为-127.60 MPa和-33.39 MPa,吊杆力误差均在10%以内,吊索索力分布均匀合理,采用梁-拱-索三控法优化后落梁法施工的钢管拱桥成桥内力、线形和索力具有较高的精度,满足规范要求,能够很好地应用在钢管拱桥施工中,可为同类型桥梁的高效施工提供借鉴和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号