首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对无人车路径跟踪过程中跟踪效果与车辆稳定性这一多目标控制问题,基于分层控制理论提出了一种分布式驱动无人车辆路径跟踪与稳定性协调控制策略。建立了车辆动力学模型和路径跟踪模型,利用滑模控制方法设计了上层控制器,旨在减小路径跟踪过程中的航向偏差和横向偏差的同时确保车辆自身的稳定性。在下层控制器中,设计了一种四轮轮胎力优化分配方法,根据上层控制器需求,结合车辆横摆与侧倾稳定性情况,实现四轮轮胎力的定向控制分配。基于CarSim和Simulink搭建了联合仿真模型并进行仿真实验,结果表明,提出的协调控制策略能够有效地控制车辆路径跟踪中的航向偏差和横向偏差,同时确保车辆的侧倾与横向稳定性。  相似文献   

2.
针对人机共驾车辆路径跟踪控制精度和车辆稳定性难以有效保障的问题,提出一种集成控制策略,包括主动前轮转向系统(AFS)可变传动比曲线和基于模型预测控制(MPC)的路径跟踪控制器。针对稳定性控制,构建考虑路面附着条件和车速的AFS可变传动比函数,用于保证车辆路径跟踪过程中的安全性和横向稳定性;针对路径跟踪控制,设计基于MPC的路径跟踪控制器,用于跟踪目标路径;搭建了基于Carsim/Matlab的联合仿真平台并进行仿真验证。结果表明:集成控制策略可以有效改善人机共驾车辆的操作稳定性,显著提高了车辆的跟踪性能,削弱了驾驶员驾驶状态波动对车辆行驶安全的影响。  相似文献   

3.
四轮独立转向-独立驱动电动车(4WIS-4WID EV)具有低速机动性强、高速稳定性好的特点,是一种理想的智能车构型。本文中针对4WIS-4WID EV进行了主动避障系统的设计,主要包括避障路径规划和跟踪控制。首先基于车辆运动学模型,提出了采用七次多项式的避障路径规划算法;然后基于简化2自由度车辆动力学模型,设计了模型预测路径跟踪控制器;为提高车辆主动避障过程中的操纵稳定性,路径跟踪控制算法采用四轮转向与直接横摆力矩控制技术。通过不同附着系数路面工况与侧风扰动工况仿真,验证了所设计的主动避障系统具有良好的避障能力和鲁棒性。  相似文献   

4.
为保证无人车在参数不确定性影响下的路径跟踪具有预设控制精度,提出一种具有预设跟踪误差性能的路径跟踪输出反馈控制方法。根据横向预瞄偏差建立了路径跟踪二阶误差积分系统,在考虑轮胎侧偏刚度参数摄动及车辆横向速度未知的情况下,利用扩张状态方法建立了含有复合未知项的控制模型,再通过设计线性扩张状态观测器对系统未知状态和模型不确定项进行估计,并进一步证明了观测误差的一致有界收敛性。针对无人车路径跟踪瞬态和稳态性能无法满足预设精度的问题,结合观测器估计值提出了一种具有预设性能的路径跟踪输出反馈控制器,并根据Lyapunov理论对闭环系统稳定性进行了严格证明。Matlab/Simulink仿真结果表明,所设计的控制策略能保证车辆以预设控制性能跟踪上期望路径,进一步在硬件在环仿真试验台上进行验证,结果表明所设计方案能严格保证横向跟踪偏差位于安全边界之内并具有较强的鲁棒性。  相似文献   

5.
为保证智能汽车在不同车速下路径跟踪的精确性与稳定性,本文中设计了一种带有预瞄PID转角补偿的模糊线性二次型调节器(LQR)以进行路径跟踪控制.首先,基于路径跟踪误差模型设计了LQR控制器,并采用预瞄PID方法进行转角补偿,消除稳态误差,提高跟踪精度.接着,针对固定权重系数的控制器对于不同车速适应性较差的问题,提出了一种...  相似文献   

6.
为了提高智能车辆路径跟踪的精确性和鲁棒性,基于李雅普诺夫稳定性(Lyapunov Stability)理论设计了鲁棒反馈路径跟踪控制器,运用舒尔(Schur)补引理并求解线性矩阵不等式(LMI)得到控制系统的反馈矩阵。通过搭建CarSim/Simulink联合仿真平台将鲁棒反馈控制器与线性二次型调节器(LQR)进行对比分析,以不同的车速分别在不同附着系数的路面上进行仿真,验证所设计控制器的性能。仿真结果表明:在不同路面和车速工况下,相较于LQR控制器,基于李雅普诺夫稳定性理论的鲁棒反馈控制器具有更高的控制精度,同时具有更强的鲁棒性。  相似文献   

7.
《汽车工程》2021,43(4)
为提高分布式驱动电动智能汽车在自主循迹过程中关键参数的估计精度并降低模型不确定性对控制系统鲁棒性的影响,本文中提出了一种基于观测器的自适应滑模路径跟踪控制策略。首先,针对难以直接精确测量的车辆纵、侧向速度,建立了5输入3输出3状态的状态估计系统,并采用最小模型误差准则以降低估计过程轮胎的非线性特性带来的观测模型误差。接着,基于运动学模型,计算出了路径跟踪期望横摆角速度响应,并采用自适应滑模算法实现主动转向控制。考虑线控转向系统的潜在失效风险,引入径向基神经网络对系统不确定性进行在线估计。同时,设计了直接横摆稳定控制器并采用最优转矩分配策略,进一步提高车辆的稳定性。最后,对车辆状态估计和路径跟踪进行了Carsim/Matlab联合仿真,结果表明:基于最小模型误差准则的观测器能取得较可靠的估计结果,路径跟踪控制器能保证车辆具有较好的跟踪精度和鲁棒性。  相似文献   

8.
为解决高速工况下低附着系数复杂路面上转向和行驶稳定性等难以控制的问题,建立了6自由度整车动力学模型,在传统模型预测控制理论基础上,设计了前轮主动转向控制器,并通过CarSim和MATLAB/Simulink进行联合仿真,在兼顾路径跟踪精度和行驶稳定性的前提下,对控制器参数进行优化,使车辆在中低速下路径跟踪达到最佳状态,在较高车速下加入侧偏角软约束,以保证跟踪精度和行驶稳定性。试验结果表明,提出的控制方法能保证车辆在冰雪路面高速行驶时具备一定的转向精度和行驶稳定性。  相似文献   

9.
文章建立车辆二自由度运动学模型,并将车辆二自由度运动微分方程离散化、线性化,设计了一种基于模型预测算法的轨迹跟踪控制器,并且在实验的基础上制定合理的约束函数和控制规则,从而兼顾路径跟踪的准确性和车辆的稳定性。采用CarsimSimulink平台对算法进行仿真验证,结果表明基于模型预测控制的轨迹跟踪控制器在5m/s以下时能够较好地跟踪预设轨迹。  相似文献   

10.
针对模型预测控制(MPC)路径跟踪控制器在不同路面附着系数及车速下跟踪误差大的问题,提出了基于粒子群寻优(PSO)-反向传播(BP)神经网络优化MPC的无人驾驶汽车路径跟踪控制策略。首先,设计了MPC路径跟踪控制器;其次,利用PSO-BP对MPC进行优化,以控制器精度和车辆稳定性作为评价函数,获得PSO离线最优时域参数;最后,选择4种工况进行双移线跟踪对比仿真验证。结果表明:所提出的控制策略在保证行驶稳定性的条件下,低路面附着系数低速、高路面附着系数低速、高路面附着系数高速及中路面附着系数中速工况下双移线跟踪横向控制精度分别提高了50%、55%、9%和20%。  相似文献   

11.
针对汽车转向制动工况,研究汽车主动前轮转向系统(AFS)和防抱死制动系统(ABS)的协调控制;建立七自由度整车模型、前轮主动转向系统模型、防抱死制动系统模型以及轮胎模型,设计了转向系统控制器和制动系统控制器,以及两子系统的协调控制器,并对提出的控制策略进行了仿真分析和对比验证。仿真结果表明:在转向制动工况下,与独立控制系统相比较,协调控制系统能够在保持车辆制动稳定性的同时缩短制动距离,充分发挥两子系统的优势,进一步了提高汽车的操纵性和安全性。  相似文献   

12.
为满足车辆高速大侧向加速度工况下的跟踪要求,本文中对差动转向无人车辆的系统动力学特性和相关稳定性问题进行研究,分析了车辆航向角跟踪误差和路径跟踪的动力学稳定性。基于反步法和饱和控制设计的动力学控制器在稳定车辆内动态的同时跟踪给定的航向角信号。仿真结果证明了所提出控制方案的可靠性,在航向角1阶导数为零或常数的条件下,系统具有良好的跟踪性能。同时,控制器之间的互联稳定性使系统对于一般工况下的目标轨迹都具有良好的跟踪性能。  相似文献   

13.
针对智能驾驶车辆在实际行驶过程中的路径跟踪问题,建立了二自由度车辆动力学模型和路径跟踪预瞄模型,并将两者相结合。将给定的双移线和蛇形线路径作为滚动时域线性二次控制器模型的输入,将得到的转向盘转角输入车辆模型,得到了车辆横向速度、横摆角速度、横向位移和横摆角。仿真结果表明,提出的路径跟踪控制策略能够使车辆在换道时始终维持方位偏差在0.06 m以内,同时具有较好的横向稳定性。  相似文献   

14.
为了解决智能车辆在工况变化时跟踪精度下降和稳定性变差的问题,提出基于强化学习的变参数模型预测控制(MPC)算法多目标控制策略,实现智能车辆路径跟踪控制系统的参数自适应整定。基于车辆动力学模型设计其线性时变MPC控制器,获得最优前轮转向角和附加横摆力矩。基于Actor-Critic强化学习架构,设计进行控制参数整定的深度确定性策略梯度(DDPG)智能体和双延迟深度确定性策略梯度(TD3)智能体,构造以跟踪精度和稳定性为目标的收益函数,并搭建对接工况和变曲率工况2种典型仿真场景进行算法性能验证,当车辆处于对接工况时,根据路面附着系数的变化及时调整控制器的预测时域和权重矩阵;当车辆处于变曲率工况下时,针对道路曲率变化及时调整控制器的预测时域和权重矩阵。通过MATLAB/SimuLink、CarSim和Python联合仿真分析,将强化学习方法参数整定MPC与固定参数MPC和模糊控制方法参数整定MPC进行对比,结果表明:强化学习方法更能够在保证车辆安全性的前提下,尽可能提高智能车辆在不同路面条件下的路径跟踪精度。在对接工况下,强化学习方法参数整定MPC相较于固定参数MPC和模糊控制方法参数整定M...  相似文献   

15.
通过建立1/4车辆模型,应用最优控制理论进行了车辆主动悬架的LQG(Linear Quadratic Gaussian)控制器的设计,并在Matlab/Simulink环境中建立系统模型并进行仿真,将仿真结果与被动悬架仿真结果进行对比分析。仿真结果表明,具有LQG控制器的主动悬架对车辆行驶平顺性和乘坐舒适性的改善有良好的效果。  相似文献   

16.
针对自主驾驶车辆的转向避撞问题,提出了一种分层避撞控制方法。上层路径规划控制器基于车辆运动学模型,引入人工势场函数,采用障碍物与车辆的相对状态描述车辆碰撞风险。基于模型预测控制理论,构建优化目标函数,规划最优避撞路线,并采用五次多项式拟合局部避撞路径。对于下层路径跟踪控制器,则建立车辆非线性动力学模型,构建基于最优转向盘转角输入的路径跟踪优化函数,实现局部避撞路径跟踪。最后搭建了Carsim/Matlab联合仿真平台,对被控车辆在不同路面、不同车速情况下的避障路径规划和跟踪效果进行了仿真。结果表明:上层控制器能根据障碍物信息实时规划局部避撞路径,下层控制器能控制车辆平滑、稳定地跟踪参考路径,从而实现车辆的主动避撞功能。  相似文献   

17.
为提高基于预瞄理论的路径跟踪控制算法的计算效率与适应性,本文中在预瞄最优曲率模型的基础上,提出了一种依据车辆实际行驶路程获取预瞄点侧向位移的弧长预瞄方法。并在该方法下,推导了预瞄点侧向位移与车辆前轮转角之间的关系,之后通过侧向跟踪闭环系统方框图,建立了路径跟踪的侧向控制模型。最后,在CarSim/Simulink联合仿真环境下,通过建立若干典型仿真工况,对该模型的有效性和人-车-路闭环系统转向盘稳定性影响因素进行了仿真分析。结果表明,该方法在侧向路径跟踪控制方面具有跟踪精度高、计算速度快和适应性好的特点。并且,当闭环系统同时满足期望路径点方向连续和预瞄距离大于临界前视距两个条件时转向盘趋于稳定。  相似文献   

18.
针对紧急避让工况,提出一种基于曲率控制的路径跟踪控制方法。以车辆二自由度动力学模型为基础,设计基于曲率控制的二阶自抗扰路径跟踪控制器,采用前馈与反馈相结合的复合控制方法进行曲率跟踪控制。为了解决避让过程中侧向加速度过大或产生阶跃、曲率不连续问题,引入三次B样条曲线进行路径跟踪曲率规划,采用CarSim/Simulink联合仿真方法进行控制器性能验证。仿真结果表明,在对接和对开路面工况下,基于曲率控制的路径跟踪控制器能够保证车辆实际行驶路径曲率跟踪理想路径曲率,抵抗外界干扰能力强。  相似文献   

19.
针对商用车路径跟踪横向控制与抗侧倾控制相互耦合的问题,将横向控制和抗侧倾控制视为动态博弈过程中的参与者,提出一种基于Pareto最优均衡理论的横向-抗侧倾协同控制策略。首先,建立商用车横摆-侧倾耦合模型,并利用车辆的横向位置、航向角和道路预瞄信息将其增广为智能车-道路闭环模型;其次,基于线性二次型最优(LQR)控制理论设计了分散式横向-抗侧倾控制器作为对比,在分散式最优控制器基础上,进一步充分考虑博弈参与者之间的控制交互,设计了一种基于合作式Pareto最优均衡理论的横向-抗侧倾协同控制策略;最后,选取蛇形线工况对两种控制策略进行仿真验证,结果表明,相比于分散式最优控制器,本文中提出的基于Pareto最优均衡理论的协同控制器能在有效提高路径跟踪精度的同时保证较好的侧倾和操纵稳定性。  相似文献   

20.
为提高智能车辆路径跟踪的鲁棒性,基于模型预测控制原理提出了一种路径跟踪控制方法。该方法对车辆的3自由度非线性动力学模型进行线性化,得到线性时变模型和预测方程,并将包括控制量、控制增量等约束纳入二次规划的求解过程,同时考虑质心侧偏角、路面附着系数等影响操稳特性的约束条件。在Car Sim和MATLAB/Simulink平台上以不同车速进行了双移线工况下的联合仿真,结果显示,该控制器可较好地实现路径跟踪,并保持较好的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号