共查询到20条相似文献,搜索用时 15 毫秒
2.
文章针对近年来的无人驾驶汽车路径规划算法进行总结和归纳。首先对目前主流的环境建模方法进行阐述;其次对路径规划算法进行介绍,通过分析其优缺点,指出融合轨迹规划算法具有最好的适用性;最后总结当前研究挑战并提出了相关建议。 相似文献
3.
无人驾驶汽车是目前汽车发展的一个大方向,无人驾驶的实现依靠于汽车的感知、决策和控制功能。路径规划属于决策中重要的一环。目前,无人驾驶汽车的路径规划算法存在受环境影响较大,无法适用于复杂的道路环境的问题,基于此文章对无人驾驶汽车轨迹规划算法进行归纳。其在广义上可分成全局路径规划和局部路径规划两种,文章对上述两种规划进行细分并介绍了各种路径规划方法的原理,分析了各个方法的优劣,为无人驾驶汽车路径规划算法的研究提供参考。 相似文献
4.
局部路径规划层作为无人驾驶汽车软件层的重要组成分布,如何有效、安全地到达目的地是当前研究的热点。针对结构化道路信息,充分考虑车道线的约束,在使用Frenet坐标系理论的基础上,提出一种考虑到车道线曲率和障碍物模型信息,得到不同车道上其他道路参与者的位置信息,以便计算其他障碍物模型对本车危险程度,综合算法实时性、轨迹平顺性等要素的最小代价局部路径规划算法。在局部路径规划过程中,沿着参考线(Frenet坐标系下X轴上一段路径)选取多个路径分割点,Frenet坐标系下在每个分割点处沿Y轴进行控制点离散,每个路径分割点处选取1个控制点构成路径控制点集合,使用一元三次方程对每种排列组合路径进行拟合,从而使用代价函数对每种排列组合路径进行评估,代价函数值最小为最优的局部路径。代价函数考虑拟合轨迹到障碍物的危险程度、轨迹平顺性、轨迹到当前参考线(实时在全局路径规划层上根据车速得到一条当前需要跟踪的理想轨迹)的偏离程度、拟合轨迹行驶方向的改变程度、无人驾驶汽车最小转弯半径。研究结果表明:在不同试验场景下,所提出基于代价函数的局部路径规划算法,能规划出一条不与障碍物发生碰撞的最优路径,并能保证无人驾驶汽车行驶轨迹平顺性和路径规划层实时性的要求。 相似文献
5.
6.
无人驾驶汽车路径识别算法研究 总被引:1,自引:0,他引:1
主要介绍采用机器视觉的无人驾驶汽车在路径识别方面采用的一种新的路径识别方法,该方法通过摄像头标定、车辆位置和道路位置标定、图像预处理等一系列预先处理方式,结合图像识别中的启发式搜索算法达到准确识别路径的目的。 相似文献
7.
在各类产业向智能化发展的21世纪中,无人驾驶技术作为IT产业与传统汽车紧密结合的代表,得到了高速发展。无人驾驶汽车的路径规划问题一直是其发展过程中的一个难关。从简化问题的角度出发,可以将无人驾驶汽车的路径规划问题转换为以最短路为目标的单目标优化问题。通过利用Floyd算法,在这个基础上建立出了无人驾驶汽车的路径规划模型。在分析Floyd算法的实现机制后,借助于matlab,将该模型求解,得到了从起始点到达任意路口的最短距离以及相应的行驶路径。最后评价了该模型的优缺点,以及分析了未来无人驾驶汽车将需要改进方向。 相似文献
8.
9.
文章基于车辆动力学模型和轮胎模型,采用模型预测控制设计预测模型,为提高跟踪实时性和精度而引入了前轮侧偏角变量,使无人驾驶汽车在较低的附着系数工况下以及高速公路的工况下,可以精准地跟踪目标路径.文章实验结合Carsim和Simulink联合仿真,通过仿真实验可以得出结论:在模型中考虑前轮侧偏角约束之后,相比于传统的MPC... 相似文献
10.
11.
路径规划及路径跟踪控制是智能汽车研究的关键技术,而复杂、时变的交通环境给智能汽车的路径规划与跟踪提出严苛要求。针对现有局部路径规划方法只适用于较为简单的工况,无法应对多车道、多静/动态障碍等复杂工况的问题,提出一种基于离散优化思想的动态路径规划算法。该算法利用样条曲线曲率变化均匀的特性,在s-ρ曲线坐标系中生成了一组参数化候选路径簇;考虑动态碰撞安全影响,在碰撞带约束下结合道路法规限制及车辆动态安全要求,规划车辆速度;此外,综合考虑静态安全性、舒适性、目标车道、道路占用率等影响因素,以选择最优路径。在路径跟踪层面,基于预瞄理论设计鲁棒性好、跟踪精度高的分数阶PID路径跟踪控制器,以跟踪误差最小为目标,采用粒子群优化算法对分数阶PID控制器参数进行整定。最后,基于Simulink/CarSim建立联合仿真平台,设计多车道,多静/动态障碍的复杂工况以验证该算法的有效性。研究结果表明:由于在评价函数中引入动态安全评价指标、目标车道评价指标以及道路占用率指标,极大地提升了规划器性能,使车辆在行驶过程中根据驾驶环境自主调整速度,降低换道次数,从而保证智能汽车的主动安全性能,提升了通行效率,使该算法能够较好地处理复杂动态环境下的避障问题。 相似文献
12.
路径规划是多学科交叉智能车技术的重要组成部分,本文从环境建模和路径搜索两个方面对现有的路径规划方法进行阐述。路径搜索算法分为图搜索算法,树搜索算法,智能优化算法三类,文中介绍了涉及算法的原理、应用现状及优缺点三个方面,总结了现有的路径规划算法,并对未来发展趋势作出展望。 相似文献
13.
为了解决随机采样算法受感知环境不确定性影响下的弱鲁棒性以及弱可靠性问题,采用一种基于激光空间势场的渐优随机采样算法框架来设计符合无人驾驶需要的规划算法。针对感知环境的不确定性,首先基于势场原理与激光障碍物点云构建一个融入了斥力场的规划空间,解决激光障碍物提取中的过分割等问题。其次,利用规划空间来处理随机采样算法中的采样策略、最优母节点选取策略、修剪策略以及最终路径选择策略。再次,在算法中加入了Anytime策略来提高优化解的利用率,使得算法的计算效率满足无人驾驶实时性的要求。同时,为了保证无人驾驶中规划路径的鲁棒性与可靠性,创建了一个综合5重因素的代价函数来选择最优路径,并根据不同的无人驾驶场景来调整相对应的参数;最后在城市测试道路上进行了实地测试。结果表明:设计的算法框架能够适应最高时速40 km·h-1的城区驾驶环境,并能完成跟驰、换道、融入以及静动态障碍物的避障决策。在与SST算法的对比试验中,所提出的算法在各个试验中的轨迹、方向盘转角以及速度的平滑性都优于SST算法,其轨迹与障碍物的距离也优于SST算法。 相似文献
14.
本文旨在研究在结构化道路上行驶的无人驾驶汽车的局部路径规划.基于人工势场法,利用高斯组合隶属函数建立引力的目标点函数,在引力点函数中考虑障碍物约束和车辆约束,并引入调节因子,建立了改进的无人驾驶汽车人工势场模型,消除了传统人工势场法容易陷入局部极小的问题.硬件在环试验结果验证了所提方法的有效性. 相似文献
15.
周边车辆行为识别对于提升无人驾驶汽车决策规划的合理性和控制安全性至关重要。传统的周边车辆行为识别方法识别精度普遍不高,且缺乏对交通主体相互之间邻域影响的考虑,算法鲁棒性较差。针对此,本文中提出了一种SLSTMAT(Social-LSTM-Attention)算法,创新性地引入目标车辆社交特征并通过卷积神经网络提取,建立了基于深度学习的车辆行为识别模型,应用注意力机制来捕捉行为时窗中的多时步信息,实现了周边车辆行为准确识别。采用HighD轨迹数据集和实车数据进行算法验证。结果表明,所提算法对周边车辆行为识别的准确率达94.01%,在目标车辆到达换道点的前1 s时刻行为识别精度达90%,具有较高的工程应用价值。 相似文献
16.
17.
无人驾驶汽车路径跟踪控制是无人驾驶汽车运动控制的核心所在,目前常用的路径跟踪模型主要以路径跟踪精度为主要控制目标,在很大程度上忽略了无人驾驶汽车的乘坐舒适性和控制的拟人程度。为了研究无人驾驶汽车路径跟踪控制算法的拟人程度并提高乘坐舒适性,基于转向几何学、汽车运动学和汽车动力学理论建立实车中常用的4种路径跟踪模型,提出以路径跟踪过程中的最大横向加速度aymax和方向盘转角平方和δw2共同表征路径跟踪模型的拟人程度和横向乘坐舒适性。基于驾驶人实车换道试验数据,建立多项式拟人换道参考路径,搭建CarSim/Simulink联合仿真模型,并对其进行不同车速下的车辆换道试验。研究结果表明:路径跟踪模型的横向循迹偏差均会随着车速的提高而增加,但都能较好实现路径跟踪;带预瞄路径跟踪模型和动力学前馈最优LQR路径跟踪模型拟人程度较好;汽车运动学路径跟踪模型的乘坐舒适性最差,方向盘修正激烈;在100 km·h-1,aymax>0.7 m·s-2,δw2>2.7×103时,拟人程度最差;不带预瞄路径跟踪模型循迹精度最高,且拟人程度最高,乘坐舒适性最好,120 km·h-1时,aymax ≤ 0.5 m·s-2。 相似文献
18.
19.
20.
无人驾驶汽车的路径规划面临着复杂多变的交通环境,为了更全面的评价路径选择指标以规划更合理的路径,以及更好的解决路段环境动态变化对规划结果造成的影响,研究了一种考虑多影响因素的动态路径规划算法——RDMA*(Real-time Dynamics of Multiple influencing factors AStar)算法.以A*(AStar)算法为核心,通过加入多影响因素的交通评价因子对其代价函数进行改进,综合考虑距离,交通拥堵程度,道路平整度和其他影响因素,应用层次分析法确定各影响因素的相对权重,以综合代价值为评价指标进行路径规划.通过GPS,雷达和摄像头等设备,利用融合感知技术获取相关道路环境信息,根据获取的全局和局部交通环境数据信息,利用实时动态更新策略解决动态环境下的路径规划问题,实时规划最优路径.通过对实际案例进行模拟,结果表明,应用RDMA*方法规划的路径相比基础A*方法规划的路径出行总体耗时减少了15.75%.并且在遇到特殊事件的状况下,通过RDMA*动态规划可为无人驾驶车辆即时提供一条综合代价值最小,耗时最少的可行路径,与改进的A*动态路径规划方法相比减少了10.63%的二次规划综合代价值的损耗,提高了7.83%的时间效率.该方法能更好的适应复杂的道路和交通系统,即时应对动态变化的交通状况,具备更强的实用性. 相似文献