首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
为了提高客车电子稳定性控制系统(ESC)的控制精度,针对实际车辆系统建模中存在各种非线性扰动项以及传统滑模控制(Sliding Mode Control,SMC)中抖振较大的问题,提出一种自适应神经网络滑模控制算法.基于2自由度车辆模型,首先设计一个二阶滑模(Second-order Sliding Mode,SOSM...  相似文献   

2.
针对商用车ESC控制中,实际车辆存在各种扰动,难以建立精确的车辆模型,传统滑模控制存在较大抖振等问题,本文中提出基于非线性扰动观测(NDOB)的自适应滑模控制(ADSMC)算法。首先,利用非线性扰动观测器对车辆建模的扰动项进行估计;然后,采用径向基神经网络对滑模控制器的关键参数进行自适应调节,以简化参数调节过程、减小滑模抖振、提高控制精度;最后,在TruckSim中建立车辆模型,在MATLAB中建立控制策略模型,在电控气压硬件在环试验台上,对控制算法进行试验验证。试验结果表明,NDOB-ADSMC算法的ESC控制效果良好,能够满足车辆ESC控制需求。  相似文献   

3.
为消除参数不确定性和外部干扰等因素对智能汽车纵向巡航控制的影响,提出一种基于自适应动态滑模的纵向巡航控制方法.建立以广义纵向力导数项为控制输入的车辆纵向动力学模型,基于反步法构建保证车速与纵向加速度同时收敛于期望值的新型滑模函数;在此基础上,设计了期望广义纵向力的动态滑模控制律,并利用RBF神经网络对控制律中的未知干扰...  相似文献   

4.
本文采用牛顿欧拉方法,建立客车在纵向、横向、侧倾与横摆等方向的底盘四自由度(4-DOF)复杂模型。针对客车防侧翻控制要求,建立适合控制设计的简化模型。然后,采用横向载荷转移率来判断客车侧翻临界状态,并将其作为客车侧倾动力学稳定性的控制目的。运用滑模控制方法,设计控制器。最后,以模拟客车极限行驶工况的Fishhook和J-turn为系统的扰动,仿真研究控制器的功能与性能。  相似文献   

5.
鉴于汽车纵向动力学系统为典型的参数时变不定、多扰动的非线性离散系统,基于精确数学模型的控制算法较难取得理想效果,本文中采用无需模型、基于输入/输出数据的控制算法.首先,基于紧格式动态线性化数据模型,将无模型自适应控制(MFAC)算法、滑模控制(SMC)算法和模型预测控制(MPC)算法相结合,设计了无模型自适应控制器.接...  相似文献   

6.
为了提高智能车的路径跟踪精度和行驶稳定性,针对智能车路径跟踪控制提出了一种考虑车辆纵横向协同的跟踪策略。从车辆整体系统出发,对纵向运动和横向运动进行解耦,采用分层控制的结构,上层控制器利用基于径向基函数(RBF)神经网络的自适应滑模变结构控制对车辆运动学耦合进行解耦,并用RBF神经网络对模型不确定性造成的系统扰动实时追踪;下层控制器以轮胎利用附着系数作为优化目标,将轮胎力约束在附着椭圆内。基于纵横向协同控制对纵横向轮胎力进行优化分配,从而提高极限工况下车辆路径跟踪的精确度和稳定性。  相似文献   

7.
客车在急转弯时,侧倾运动对其横向载荷转移率和轮胎垂向受力的改变,不仅会引起侧翻事故,还会对横摆运动产生重要影响。文章综合分析客车侧倾、横摆动力学及其耦合关系,建立耦合动力学模型。采用差动制动和主动式防倾杆等主动控制方法,并基于滑模控制理论设计集成控制系统。仿真结果表明,该系统可提高客车侧倾与横摆动力学稳定性,实现客车防侧翻和防侧滑的综合功能。  相似文献   

8.
针对高速行驶的车辆处于大转角、避障等紧急工况下容易出现侧翻的问题,本文中提出了采用差动制动与主动横向稳定杆联合对车辆进行侧翻控制策略。为提高对车辆侧翻的控制效果,一方面通过全轮差动制动来提高车辆的横摆稳定性,防止车辆由于失稳产生绊倒性侧翻,并减小车辆的侧倾;另一方面,考虑到处于紧急工况下车辆的非线性与时变性,采用主动横向稳定杆并设计了2阶滑模超螺旋控制器来动态跟踪车辆的理想侧倾角,实现驾驶员对车辆侧倾姿态的准确判断,防止驾驶员产生误操作,进一步提高了车辆的防侧翻能力。最后,通过硬件在环试验对提出的主动横向稳定杆与差动制动联合控制策略的有效性进行了验证。  相似文献   

9.
为实现一种新型线控转向系统的转角跟踪性能,提出了一种自适应模糊滑模控制(AFSMC)方法。传统的滑模控制(SMC)设计需要预先获得系统扰动量,而AFSMC可通过在线模糊自适应系统实时估计出系统扰动量,进而减弱控制律中的切换项信号,降低了控制系统的保守性和抖振现象。仿真结果表明,AFSMC控制下的线控转向系统具有良好的转角跟踪性能、鲁棒性和能效。  相似文献   

10.
通过总结和分析各国现有振动压路机振动轮调幅装置的不足,提出能够实现智能控制的电液无级调幅系统方案,详述了其组成和调幅原理。针对电液调幅系统具有非线性、大时滞的特点,提出了神经网络自适应PID控制策略,将神经网络自适应补偿器与PID控制器并联,补偿系统参数摄动、非线性和外界扰动对系统控制性能的影响,提高系统的响应速度和控制精度。基于DSP芯片TMS320LF2407A设计了硬件控制器,实现了神经网络自适应PID控制的数字化。结果表明:提出的控制策略相比于传统的PID控制在快速性、准确性方面均具有一定的优越性,为开发智能化振动压路机奠定了基础。  相似文献   

11.
汽车操纵稳定性研究对于保障车辆的行驶安全意义重大。文章基于Trucksim仿真平台,依据车辆具体设计参数构建合理的客车模型,在整车参数化建模后,从中选择四项与车辆侧翻密切相关的试验进行仿真验证,仿真结果符合预期、精度较高,各项参数指标符合相关规定和行车安全要求。深入研究分析仿真结果后得到各个参数对车辆操纵稳定性的影响。正确使用Trucksim仿真软件对前期的开发和后期的试验验证有着积极正向的指导意义。  相似文献   

12.
针对汽车高速紧急换道避障轨迹规划与跟踪控制问题,提出一种基于Radau伪谱法的汽车高速紧急换道避障最优控制策略。首先,采用汽车运动学与动力学模型相结合的方式将汽车高速紧急换道避障轨迹规划和跟踪控制问题转换成汽车高速紧急换道避障最优控制问题,再通过Radau伪谱法将其转化为非线性规划问题,从而直接得到汽车高速紧急换道避障轨迹规划和跟踪控制问题的最优解,即:目标轮胎纵向滑移率和目标前轮转向角速度。随后,采用离散滑模变结构控制理论设计了对参数摄动和外界干扰具有强鲁棒性的车轮滑移率自适应滑模跟踪控制律,实现目标轮胎纵向滑移率的跟踪控制。最后,基于高精度的车辆动力学软件构建模型在环仿真系统,验证所提控制策略的可行性和有效性。  相似文献   

13.
无刷直流电机是一种非线性变化、参数变量较多、高耦合的运动系统。在车辆运行过程中,无刷直流电机容易受到未知扰动的影响。针对此问题,将模糊自适应+自抗扰控制应用到车辆无刷直流电机中来,既可以有效减小各种干扰对于无刷直流电机平稳性驱动的干扰,同时又能够提高转速响应。通过仿真和实验,该方案能够较为明显地改善无刷直流电机在车辆行驶过程中的操控性和转速调测性。  相似文献   

14.
为了消除大多数现有智能网联车辆队列控制成果中车辆纵向动力学模型已知的假设,研究具有未知动态的智能网联车辆的队列控制问题,提出了基于径向基函数神经网络的分布式车辆队列控制方案。该方案先利用欧拉法将车辆的纵向动力学模型进行了离散化,后结合反步法和径向基函数神经网络设计了离散分布式车辆队列控制器。相较于现有成果,该方案通过利用径向基函数神经网络逼近车辆的未知非线性动态,取消了车辆动力学特性完全已知的假设。此外,相较连续的队列控制算法,离散的控制算法更适合数字控制器的实现。最后,通过理论分析和仿真模拟的方式验证了所提出算法的有效性。  相似文献   

15.
针对工业生产过程中的多变量耦合系统难以实现解耦的问题,建立了一种改进的规划算法的RBF神经网络逆系统,构造了多变量神经网络控制器,用来对多变量耦合系统进行解耦控制。对一组给定的二变量耦合系统进行了仿真,结果表明:基于改进的进化规划算法的RBF神经网络逆系统的解耦控制不仅超调量小、响应速度快、控制精度高,而且具有很强的鲁棒性和自适应能力。该解耦控制使得解耦后的多变量系统具备良好的动、静态特性,达到了理想的控制效果。  相似文献   

16.
《汽车工程》2021,43(9)
为了提高多轮分布式电驱动车辆在复杂机动环境下的转向能力,设计了一种基于直接横摆力矩控制的双重转向系统。该控制系统采用分层结构,上层为横摆力矩决策层,下层为驱动力分配层。在控制系统上层,基于无迹卡尔曼滤波和递归最小二乘结合算法进行路面辨识;根据车辆状态信息和路面条件自适应调节滑移转向比,由车辆动力学模型和滑移转向比确定双重转向参考模型;针对滑模面附近非连续特性造成的控制信号抖动现象,将滑模控制算法进行改进,设计了滑模条件积分控制器,使车辆实际横摆角速度追踪双重转向参考模型计算出期望横摆角速度。系统下层在保证车辆总驱动力的前提下,基于控制分配规则将上层广义目标控制力需求分配至各执行器。最后,利用硬件在环实时仿真平台进行控制策略验证。结果表明,分层控制系统较好地实现了路面识别功能和车辆双重转向功能,针对不同路面工况对车辆进行了有效地行驶控制,减小了车辆在狭小弯曲地区的转弯半径,抑制了车辆状态参数及电机转矩的颤振和抖动,改善了车辆小半径行驶的转向机动性和高速行驶稳定性。  相似文献   

17.
根据轮胎与路面间附着系数-滑移率关系曲线的单峰极值特性,将模糊自寻优控制算法应用到车辆气压ABS系统控制器的研究中,并通过硬件在环测试验证了该算法对车辆气压ABS系统的有效控制.与传统的逻辑门限值算法相比,该算法具有结构更简单,且能自适应路面变化的特点.  相似文献   

18.
智能车路径跟踪控制面临系统模型简化、参数不确定、执行器与传感器信号延时及道路曲率变化等干扰,将产生系统扰动误差,导致跟踪精度降低。本文针对性提出一种考虑跟踪系统复杂扰动的模型预测控制方法(model predictive control,MPC),首先以单轨车辆动力学模型为基础建立模型预测跟踪系统,并依据实时规划的路径和速度信息设计预瞄距离动态调整方法,获取最佳预瞄点,以改善智能车底盘执行器与传感器信号延时扰动问题;而后引入扩张状态观测器(extended state observer,ESO)实时估计因简化车辆模型对系统产生的未知扰动量并用于前馈补偿;同时,考虑道路参考曲率变化对系统产生的确定性稳态扰动,设计一种含曲率约束的前馈控制(feedforward control,FFC)方法用于消除该干扰;最终形成MPC控制器反馈输入、ESO抗干扰补偿输入及FFC前馈输入相叠加的转向角控制律。最后,以某品牌智能车平台在低速园区场景进行了实车测试对比分析,验证了本文所改进的融合扰动补偿的模型预测控制方法具备可行性和优越性。  相似文献   

19.
针对车道保持控制中可能遇到的不确定性扰动和状态时滞问题,提出一种自校正滑模控制方法.该方法首先利用线性矩阵不等式理论给出积分型滑模面存在的充分条件,使系统在滑动模态下对于存在的不确定性扰动以及状态时滞具有完全不变性;接着引入双极性Sigmoid函数代替符号函数并根据Lyapunov稳定性理论设计了具有自校正能力的滑模控制器,使Sigmoid函数的边界层厚度和切换增益可根据系统状态进行自适应调节,以改善传统滑模控制输出量过大及抖振等现象.最后通过车辆在弯道工况下的车道保持仿真实验验证了该控制方法的可行性和有效性.  相似文献   

20.
为了在不同工况中,同时兼顾轨迹跟踪算法的跟踪精度,计算速度与车辆稳定性,提出基于不同车速和路面附着系数的参数自适应MPC算法。在线性时变MPC的基础上增加车辆稳定性控制,并基于路面附着系数设计2种控制策略:在高附着系数路面,针对不同车速优化预测时域与控制时域;在低附着系数路面,开启车辆稳定性控制并基于改进粒子群算法优化权重参数。2种策略在保证跟踪精度与车辆稳定性的基础上提高计算速度。设计基于前馈神经网络的路面识别算法从而为多参数自适应轨迹跟踪算法识别所在道路的路面附着系数,利用CarSim-Simulink平台进行联合仿真。研究结果表明:路面识别算法的平均绝对百分比误差为12.77%,足够满足多参数自适应轨迹跟踪算法的需求;相较于传统线性时变MPC跟踪算法,低速工况下参数自适应轨迹跟踪算法在高附着系数和低附着系数的路面上,横向平均绝对误差分别降低了20.7%和24.6%;高速工况下横向平均绝对误差分别降低了66.2%和50.7%;综合所有试验,算法的计算时间减少了40.2%;在保障车辆稳定性的同时降低算法的计算时间。研究成果针对不同车速与附着系数对轨迹跟踪算法参数进行优化,利用自适应预...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号