共查询到18条相似文献,搜索用时 62 毫秒
2.
3.
4.
5.
针对传统风洞试验、数值模拟等方法计算噪声值费时长、资源消耗大等问题,提出一种基于机器学习的气动噪声预测方法。以后视镜特征参数为数据集输入,对不同特征参数下的后视镜模型进行瞬态流场与声场联合仿真,将计算得到的总声压级值作为数据集输出,分别用不同数量的样本数据训练支持向量回归机,通过建立的预测模型对同一测试集进行预测得到总声压级预测值。结果表明,基于支持向量回归机的预测方法能得到与计算值误差较小的预测结果,在较少样本数据支撑下也具有较高的预测精度,可用于汽车后视镜气动噪声的预测。 相似文献
6.
7.
李华良熊卉万攀韦钰芳郭钊 《汽车工业研究》2015,(9):49-54
本文利用传递路径分析(TPA)方法对某一新型轿车进行轮胎引起的车内噪声分析,首先运用TPA方法拟合测试数据以求出路面对轮胎的轮心激励值,再将该值加载到CAE模型内进行数值模拟,计算车内噪声。数值模拟计算中发现乘用车后轴对整车噪声的贡献大于前轴,说明需要对乘用车的后轴进行改进;比较数值模拟结果与路面噪声的实际测试数据,发现分析误差可接受,完全可以反映出车辆车内噪声特性,验证了传递路径分析方法在车内噪声分析中的适用性和准确性。 相似文献
8.
9.
随着新能源汽车行业的迅猛发展,行驶过程中发动机噪声的贡献消失,气动噪声成为了最容易引起顾客抱怨的问题。相关研究表明,通过侧窗玻璃表面脉动压力产生的湍流脉动和声场是汽车在高速行驶时的主要噪声源。基于开源软件OpenFOAM,采用SST-DDES湍流模型,分别对两款不同车型的前后侧窗玻璃24个点的表面脉动压力进行了数值模拟计算,并与风洞试验测试相结合进行验证。结果表明,仿真结果与试验结果基本吻合,证明了该方法可以有效捕捉侧窗玻璃的表面脉动压力结果,为后续的车内噪声计算打下基础,同时也有效缩短了开发周期,并降低了后期实车风洞试验的测试成本。 相似文献
10.
11.
为研究车身A柱和后视镜的风噪,建立汽车简化模型。基于气动声学风洞试验,设计了外形配置不同的5种模型。以A计权声压级和语音清晰度为评价指标,对侧窗外表面、远场和车内风噪展开对比分析。结果表明:A柱涡区域内高频风噪衰减较快;方形A柱对后视镜风噪具有明显掩蔽作用;后视镜风噪中存在压力级峰值,对应特征频率随风速升高而增加;随风速升高,各模型车窗、远场和车内风噪均明显增加;偏航时,车窗风噪在全频段内表现出迎风侧降低、背风侧升高的趋势,远场风噪与车内风噪在不同频段展现相同趋势。 相似文献
12.
文中从后视镜风噪性能设计出发,针对后视镜镜臂上表面倾斜角、镜臂厚度、镜臂长度、后视镜安装基座厚度、后视镜镜头内侧面与侧窗的夹角等参数,分别进行了针对性的研究分析,并总结形成了各设计参数在后视镜风噪开发中的影响规律。 相似文献
13.
本文通过风洞试验研究了桑塔纳轿车后视镜产生的脉动压力场的分布情况。发现其脉动压力的能量主要集中在轿车通风窗与前侧窗的外表面位置,且其能量很大,相当于90km/h的车速下,最大处脉动压力级达132.5dB,成为一个大声源,透过玻璃向车内传递气流噪声。最后,根据理论推导证明了传递到车室内的气流噪声功率与脉动压力的平方成正比,并近似估算出在90km/h速度下由桑塔纳后视镜产生的传递到车内的气流噪声功率约为2.51×10~3W。 相似文献
14.
15.
隧道交通噪声数值模拟及调查研究 总被引:1,自引:1,他引:1
隧道交通噪声主要来源于轮胎与路面接触噪声,建立隧道内交通噪声数值模拟模型,通过有限元计算,分析了隧道不同位置交通噪声的变化规律.数值模拟结果表明,隧道内不同位置的交通噪声大小差别较大,随着距隧道洞口的距离增大,噪声水平增加,隧道中部比隧道进出口处噪声高约8~10 dB,比隧道外高16~18 dB,隧道洞体对隧道内交通噪声影响较大.通过现场测试隧道交通噪声,结果表明隧道内交通噪声数值模拟结果与实测结果较为吻合,说明所采用的数值模拟模型是可靠的. 相似文献
16.
17.
在研究汽车车内噪声的过程中,判断低频噪声的主要来源和降低车内低频噪声水平是一个难点。运用声传递向量(ATV)技术,以某轿车为例,建立车内声学空腔边界元模型,对车内低频噪声进行仿真;通过对声传递向量以及声压频响函数的计算,进一步对低频段的噪声贡献量分析,为判断低频噪声的主要来源提供了一种分析方法。选取车内驾驶员右耳畔声压响应的6个峰值点,采用幅值—相位图对场点声压进行模拟,对车身板件声学贡献量进行排序,发现防火墙和前挡风玻璃的结构振动对车内低频噪声的产生可能有重要影响,为进一步的改进提供一定的参考依据。改进设计后,车内低频噪声水平得到一定程度抑制。 相似文献
18.
传递路径分析法是诊断汽车振动噪声问题准确有效的方法。试验传递路径分析耗时耗力且需要实制样车,为在整车开发初期诊断汽车振动噪声问题,对整车虚拟传递路径分析法进行了研究。首先建立了包含底盘的整车声固耦合有限元模型,采用频率响应法预测车内声学振动响应,发现驾驶员右耳声压在38 Hz处以及驾驶员座椅导轨振动在59 Hz处存在较大峰值。在有限元模型基础上建立了整车虚拟传递路径分析模型,该模型合成的声学振动结果与频率响应法结果吻合较好,验证了模型的正确性。利用虚拟传递路径法对两处峰值作诊断分析,根据分析结果对贡献量大的路径进行优化。优化结果表明,38 Hz处驾驶员右耳声压降低2 dB,59 Hz处座椅振动改善效果明显。 相似文献