共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
精确估算动力电池的荷电状态(State of Charge,SOC)是发展电动汽车技术的关键。SOC值很难直接测出,只能通过与电池有关的温度、电流和电压等因素间接估算。文中提出了一种安时法和开路电压法结合的方法,对算法影响SOC估算的各个因素进行了补偿修正,并用Simulink建模仿真,对比仿真结果与试验结果,证明了该方法的准确性。 相似文献
5.
为减少工业常用荷电状态(SOC)估计方法——安时法的累积误差,提出一种实时校正的锂离子电池SOC估计方法。在0~60℃,放电倍率1 C、2 C、3 C和0.33 C下,进行锂离子电池放电实验,测量了电压、电流、温度,建立了锂离子电池放电数据库。从该库获取上述放电温度、放电倍率范围,SOC值为20%、80%时的开路电压,以此两点引入一条关于电压与SOC的直线。以该直线上某点电压所对应SOC作为修正项,并引入修正因子α,来校正安时法所得剩余电量SOC估计值。与实验值对比,该SOC估计结果的误差小于4%,符合工业需求。 相似文献
6.
7.
8.
针对传统动力电池的SOC估计方法的不足,采用BP神经网络对SOC进行预测。通过编写Matlab程序对BP神经网络进行了训练,并用所建BP神经网络模型对电池性能进行预测,获得电池SOC预测值,最大误差小于0.5%,结果满足精度要求,从而验证了所建BP神经网络能够有效的预测蓄电池电压和SOC之间的映射关系。对提高动力电池的能量效率,延长电池的使用寿命具有重要意义。 相似文献
9.
如今,锂离子电池已成为新能源产业和SOC的研究重点.在锂离子电池研究中,电池容量估算和计算是其中的重点研究之一.SOC直接关系到锂离子电池使用的效率和安全性,正确的SOC估算和计算方法不仅可以增加锂离子电池工作的安全性,并延长锂离子电池的使用寿命[1].相反而言,不合适的SOC估算和计算方法不仅会加速电池的老化,而且会... 相似文献
10.
在电动车、储能系统和移动设备等领域中,电池管理系统是保障电池组性能和安全性的关键技术之一,而电池荷电状态(SOC)估算是其重要的组成部分。文章重点针对18650型号的磷酸铁锂电池(单体电池)SOC估算展开研究和设计,首先选择双阶远程控制(RC)模型作为电池模型,通过电池容量标定实验、开路电压(OCV)-SOC标定实验、混合功率脉冲特性(HPPC)实验确定了双阶RC模型的各个动态参数,在MATLAB/Simulink中搭建动力电池仿真模型,验证了所选模型的可靠性。然后,为了解决单体电池SOC估算精度和成本等问题,以扩展卡尔曼滤波(EKF)算法为基础提出了一种改进方法,即在预测第k个时间步的误差协方差矩阵时,引入了时变渐消因子,在更新方差Q和R时引入自适应分子。最后,通过不同循环工况对提出的算法进行仿真分析,结果显示,提出的算法提升了SOC估算的精度,实用性强。 相似文献
11.
12.
13.
14.
15.
电池管理系统(BMS)采用了防止电池过放电和过充,提供电池均衡控制,能够实现新能源汽车动力锂电池的最佳利用和保护。电池管理系统实时精准估算电池电荷状态(SOC)是提高电动汽车续航里程和延长寿命的关键。然而,SOC不能直接测量,动力电池的充、放电又是一个复杂过程,导致目前现有的SOC估算策略很难精确地估算出实时在线SOC值。因此,如何提高SOC估算精度是当下BMS领域的研究热点。本文通过对各种SOC估算方法进行文献综述,分析和总结各个SOC估算方法的原理及优缺点,提出SOC估计策略未来发展趋势。 相似文献
16.