首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于模糊控制的双离合器式自动变速器起步过程仿真研究   总被引:3,自引:0,他引:3  
对双离合器式自动变速器起步控制的关键问题--离合器的控制进行了研究.为缩短起步时间和保证两个离合器片的寿命基本相同,起步控制时采用两个离合器同时接合,使变速器的1挡和2挡同时挂上的办法,当1挡离合器的滑转率下降到某一阈值后,2挡离合器开始慢速脱开,而1挡离合器继续工作完成起步.以驾驶员意图、离合器主从动盘的转速差和发动机实际转速与目标转速的差值为输入,设计模糊控制器,控制两个离合器的接合速度.仿真结果表明,这种控制方法能实现离合器的快速、平稳起步.  相似文献   

2.
提出以车速跟踪偏差、冲击度、滑磨功为基于驾驶机器人操纵的车辆起步质量评价指标,选取发动机油门开度、离合器输出轴转速、离合器主从动轴转速差及离合器输出转速变化值作为起步过程控制参数进行车辆起步质量控制研究.确定了这些控制参数的控制规则,并提出了基于积分分离PID控制的起步离合器控制算法.试验结果表明,采用本文提出的起步质量控制策略与控制算法,可保证离合器接合过程中车速跟踪偏差不超过1.5 km/h、最大冲击度值为8.08 m/s3、起步时间约为1.5 s.  相似文献   

3.
自动离合器精确位置跟踪控制与起步控制研究   总被引:2,自引:0,他引:2  
针对离合器位置跟踪问题,提出了一种专家PID控制算法,设计了专家调整策略,在不采用速度环的情况下实现了目标位置的准确跟踪.针对离合器接合规律问题,采用模糊控制和规则协调控制相结合的控制策略,以实现发动机恒转速起步.试验结果表明;专家PID控制算法具有较好的鲁棒性和控制精度,能够适应离合器位置跟踪控制要求;在不同工况下车辆均能顺利起步,且能够体现驾驶员意图.  相似文献   

4.
双离合器自动变速器(Dual Clutch Transmission,DCT)随着服役时间的增加离合器性态会发生变化导致起步性能下降,为降低离合器性态变化对起步性能的影响,提出一种基于扩展状态观测器和滑模控制的DCT起步自适应控制方法。首先,建立DCT起步动力学模型、发动机模型和液压控制系统模型;将DCT起步问题转化为参考轨迹跟踪问题,通过工况识别并利用极小值原理获得了不同起步工况的参考轨迹;在DCT起步动力学模型中将与离合器性态变化相关的项定义为不确定项,设计扩展状态观测器对不确定项进行估计,同时结合自适应滑模控制器,获得了起步发动机转矩和离合器油压的自适应控制率;为了跟踪发动机转矩和离合器油压的自适应控制率,设计了发动机转矩跟踪控制器,同时对液压系统采用了PID闭环控制;通过MATLAB/Simulink平台仿真以及台架试验验证所提出的DCT起步控制方法对离合器性态变化的自适应效果。研究结果表明:所提出的起步自适应控制方法能够有效避免由离合器性态变化导致的起步延时,同时1挡缓起步和急起步的仿真冲击分别减小了53.11%和43.42%,试验起步冲击分别减小了35.66%和30.31%。  相似文献   

5.
针对车辆蠕行过程中车速波动及摩擦副易烧蚀问题,本文中对干式摩擦副的摩擦特性进行了分析,确定了其热安全边界;建立了车辆传动系统模型,考虑蠕行起步及蠕行过程中离合器摩擦副摩擦因数变化,以3km/h为蠕行目标车速,得到了满足冲击度要求、相对于目标车速无超调且起步时间最优的蠕行起步控制策略;以实际车速与目标车速偏差极小为控制目标,通过PID调节离合器压紧力使车辆蠕行过程中能保持车速稳定;制订了车辆蠕行控制策略,避免蠕行过程中离合器烧蚀。  相似文献   

6.
利用神经网络训练数据建立了发动机数学模型.针对目前起步控制策略大多没有自学习功能的现状,基于补偿模糊神经网络,以油门开度及其变化率为输入变量,提出了一种汽车双离合器式自动变速器起步控制策略.采用起步时间、滑摩功、冲击度、发动机最高转速和同步转速等指标检验仿真结果.结果表明,基于补偿模糊神经网络的起步控制策略在各性能指标方面均优于原控制策略,并具有较强的自适应能力.  相似文献   

7.
杨冀 《汽车运用》2014,(10):49-49
故障现象:一辆陕汽SX2300型汽车,在行驶途中出现了换高速挡后行驶无力的现象。踩下油门踏板,发动机转速迅速升高.但车速提升很慢。减挡后车辆动力传输失效,车速逐渐下降,直至停车。再次挂挡起步。车辆根本无法前进。整个过程离合器烧焦气味明显,松开离合器踏板后助力器排气声音不明显。  相似文献   

8.
双状态无级变速车辆起步控制   总被引:2,自引:0,他引:2  
通过发动机和液力变矩器台架试验,采用拟合的方法得到发动机及变矩器模型,建立了用变矩器作起步装置的双状态无级变速传动系统动力学模型,提出了串联式双状态无级变速车辆起步控制策略和液力变矩器锁止离合器闭锁解锁控制规律,并进行了计算机仿真。  相似文献   

9.
6.超速挡直接离合器速度传感器电路检测 若显示的故障码为67号时,应进行此电路检测。 超速挡直接离合器速度传感器的结构与车速传感器相同。它根据超速挡直  相似文献   

10.
离合器打滑故障诊断离合器打滑将导致汽车起步困难,行驶中车速不能随发动机转速上升而迅速增高,严重时还可嗅到焦臭味;启动发动机,将变速器挂入1挡,驻车制动阀手柄处于制动位置,稍加油门,慢松离合器。若  相似文献   

11.
针对电动汽车低速大转矩的要求,提出了一种无离合器两挡变速电动汽车PMSM驱动控制方案,即基于转速模糊PI参数自整定的PMSM矢量控制系统,以期改善电动汽车高低速控制性能.仿真与实验结果表明,该系统克服了PMSM矢量控制系统传统转速PI控制中存在的超调量大、响应速度慢等缺点,通过转速跟踪实现了电动汽车无离合器的换挡,提高了电动汽车在各种路况下的实用性.  相似文献   

12.
电控机械式自动变速器起步控制   总被引:4,自引:0,他引:4  
系统地分析了离合器接合各阶段的特点及其对起步品质评价指标的影响。以降低起步冲击度和减少离合器滑磨功为原则,提出了离合器接合的控制策略,并阐述了离合器接合量及接合速度的确定方法。采用该控制方法对桑塔纳2000样车进行了试验研究,证明了该方法能有效地提高车辆的起步品质。  相似文献   

13.
正(接上期)双离合器是0B5变速箱的易损部件,那么双离合器损坏一般是什么部位损坏呢?双离合器损坏几乎都是内部的摩擦片烧蚀(图11、图12)。上面我们讲到了,双离合器内部有两组离合器,分别为离合器K1和离合器K2,离合器K1在1挡、3挡、5挡、7挡工作,离合器K2在2挡、4挡、6挡、倒挡,我们从图11中看到的是离合器K2的内部烧蚀摩擦片,我们经常遇见的故障也是离合器K2摩擦片烧蚀。  相似文献   

14.
电子驻车EPB (Electronic Parking Brake)是指由电子控制方式实现停车制动,本文全面介绍了EPB的工作方法、激活释放条件等,并结合上海汽车变速器有限公司双离合器变速箱起步控制的特点,分析了EPB系统中DAA坡道辅助起步功能和DCT联合应用的方案,详细而具体地说明DAA过程中变速箱控制策略的设计和优化方法,实车结果表明,该策略可以有效地实现EPB DAA起步要求,坡起平顺且完全不溜坡,具有很强的实用性.  相似文献   

15.
基于32位微控制器MPC5604开发了双离合器自动变速器(DCT)控制系统。设计了换挡规律,制定了换挡控制策略、起步和换挡过程离合器及同步器执行机构的动作时序。根据DCT的结构特点及功能要求,实现了多任务控制系统,提出了基于表驱动的多任务调度方法。基于xPC560B硬件系统测试平台对所设计DCT控制系统功能进行了验证。结果表明,所开发的控制系统工作可靠,实现了起步、换挡过程的目标控制功能。  相似文献   

16.
提出了电动干式双离合器轿车的整车综合控制策略.采用CANoe-Matlab联合仿真的方法建立了带有DCT系统的整车模型,并对其CAN网络进行仿真;向CAN总线收发DCT换捎过程中所需的报文和共享信息,重点验证了总线的运行情况和实时性.整车试验结果表明,通过CAN总线使TCU与ECU之间进行实时通信,对发动机、双离合器和变速器三者进行协调控制,能够有效提高DCT轿车的换挡品质,实现其动力换挡.  相似文献   

17.
在传统控制策略的基础上,提出以冲击度、发动机转速和离合器油液温度3个参数来优化接合压力变化率的的CVT离合器控制策略.4种起步工况下的整车试验结果显示,采用所提出的控制策略,缩短了离合器接合时间(平均缩短了0.4s),提高了汽车起步平稳性(冲击度平均降低了1m/s3).  相似文献   

18.
针对自动变速车辆起步过程中电磁离合器接合的非线性控制问题,讨论了电磁离合器理想接合过程,分析了车辆起步过程冲击度与电磁离合器电流变化率的关系,提出了以节气门开度及其变化率、发动机目标转速与实际转速、发动机最低接合转速、离合器输出轴转速为主要控制参数的离合器综合控制策略.仿真与试验结果表明,该控制策略能够很好地适应起步意图,使车辆在各种工况下均能平稳迅速起步.  相似文献   

19.
<正>离合器是否打滑的检测①汽车起步困难,行驶中车速不能随发动机转速上升而迅速增加,严重时还可嗅到焦臭味,表明离合器打滑。②启动发动机,将变速器挂入1挡,驻车制动阀手柄处于制动位置,稍踩加速踏板,慢松离合器踏板至完全结合状态,若发动  相似文献   

20.
为满足驾驶机器人利用加速踏板行程信号实现对于电动车速度跟随的需求,提出了一种基于逆控制策略模型的车速控制方法。该方法在传统纵向动力学的车速控制回路基础上,引入了车辆控制策略模型,将原有的通过电机转矩控制车速转换为通过加速踏板行程来控制,从而降低了驾驶机器人对原车辆的改造风险,提高了机器人的适用性。转鼓试验结果表明,与人工驾驶相比,本文中提出的控制方法有效提高了车速跟踪精度,误差不超过±1 km/h,满足国家电动车试验标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号