首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
建立了移动列车荷载作用下点支承连续弹性粱的轨道结构垂向振动动力学分析模型.针对提速线路,采用动力有限元分析方法。分别讨论并比较了有无钢轨初始不平顺条件下,机车以不同行驶速度通过有刚度突变轨道地段时,轨道结构的动力响应规律.理论分析计算表明,线路初始不平顺和由轨枕失效、暗坑等造成的基础刚度的突变对整个轨道结构的动力响应有着显著影响.  相似文献   

2.
应用轨道段组合单元, 建立了能反映橡胶浮置板式轨道结构竖向振动特性的动力分析模型。在模型中, 钢轨模拟为连续弹性支承的Euler梁; 浮置板视为弹性薄板, 用有限元法中的纵横向有限条带单元进行离散; 钢轨扣件及橡胶支座模拟为线性弹簧和阻尼。基于弹性系统动力学总势能不变值原理和形成系统矩阵的“对号入座”法则, 建立了地铁列车-橡胶浮置板式轨道竖向振动方程, 并对车辆和轨道结构的动力特性进行了数值分析。计算结果表明: 地铁列车通过广州地铁二号线橡胶浮置板式轨道时, 轮重减载率最大值为0.597, 车体竖向振动加速度最大值为0.846 m.s-2, 浮置板式轨道系统的隔振效率为20%~27%, 因此, 车辆-轨道结构竖向振动分析模型能够准确描述地铁车辆和橡胶浮置板式轨道结构间的动力特性。  相似文献   

3.
轨道,车辆系统竖向振动模态分析   总被引:4,自引:3,他引:4  
高速列车的发展迫切需要对线路和机车车辆系统的动力性有更深入更合成的了解。为此,本文建立了轨道、车辆系统竖向振动分析模型,并对轨道、货车和客车系统进行了模态分析,得到了轨道、车辆系统竖赂振动特性。  相似文献   

4.
高速列车的振动特性直接影响旅客乘坐的舒适性和列车运行的安全性.为了分析不同线路条件和运行速度对高速列车振动特性的影响,建立了车辆-轨道耦合系统模型,并以德国高速轨道谱和我国干线轨道谱产生的轨道随机不平顺作为耦合系统的激励,通过Newmark数值积分和Matlab仿真,计算了高速车辆在高速线路和提速干线条件下车体、构架、轮对等车辆各部件和轨道部件的振动响应.研究结果表明,随着列车运行速度的提高,高速车辆各部件振动响应均显著增大;线路条件对高速列车轮对及轨道系统振动的影响较对车体系统振动的影响明显.  相似文献   

5.
孟宏 《轨道交通》2009,(3):48-50
首先介绍了动力作用的评价指标以及国内外关于车辆对线路动力作用的评价,其次根据经验公式就既有车辆进行了动力作用分析,列出了提速车辆对线路的动力作用。最后提出了提速车辆应关注的重点。(本文有删节)  相似文献   

6.
提速线路轨道过渡段动力响应分析   总被引:8,自引:2,他引:6  
利用车辆-轨道耦合动力有限元计算,对轨道过渡段不同工况进行仿真分析,讨论了这两种因素对轨道过渡段动力系数的影响,得出不同于传统观点的结论。计算结果表明,过渡段轨道底部刚度的突变并不直接导致动力系统的增大,而一旦存在不平顺折角,轮轨之间的动力系数将急剧增大。  相似文献   

7.
车辆-轨道系统耦合高频振动的研究   总被引:3,自引:0,他引:3  
车辆-轨道垂向耦合振动是车辆-轨道耦合动力学主要研究课题.建立了车辆-轨道垂向耦合Timoshenko梁高频振动模型,运用快速积分方法编制仿真程序,对扁疤激励情况下的轮轨垂向高频振动进行系统仿真与分析,并与Eu ler梁模型仿真结果进行比较.结果表明,车辆速度与车轮扁疤的长度对轮轨系统振动有很大的影响;在高频情况下,进行振动与噪声的研究时,建议使用Timoshenko梁模型.  相似文献   

8.
车辆-轨道垂向耦合振动是车辆-轨道耦合动力学主要研究课题.建立了车辆-轨道垂向耦合Timoshenko梁高频振动模型,运用快速积分方法编制仿真程序,对扁疤激励情况下的轮轨垂向高频振动进行系统仿真与分析,并与Euler梁模型仿真结果进行比较.结果表明,车辆速度与车轮扁疤的长度对轮轨系统振动有很大的影响;在高频情况下,进行振动与噪声的研究时,建议使用Timoshenko梁模型.  相似文献   

9.
基于Timoshenko梁模型的车辆-轨道耦合振动分析   总被引:6,自引:1,他引:6  
运用车辆-轨道耦合动力学理论,建立了基于Timoshenko梁钢轨模型的车辆-轨道耦合振动模型,分析了钢轨的固有振动特性,初步探讨了车辆-轨道系统的动力响应,结果表明,Timoshenko梁钢模型在固有振动及强迫振动两方面均与Euler梁钢轨模型有明显不同,前者能更详细地描述钢轨的高频特性。  相似文献   

10.
磁浮列车车辆—轨道耦合振动及悬挂参数研究   总被引:5,自引:1,他引:4  
基于磁浮列车车辆-轨道耦合振动模型,建立了动力学方程,利用编制的仿真程序对车辆轨道的耦合动进行仿真分析,对于悬挂参数特别是模块侧滚约束参数的影响进行定量研究,确定了悬挂参数的取值范围,并据此对青城山磁浮试验车的悬挂参数和设计提供出了建议。  相似文献   

11.
考虑到多刚体系统动力学研究方法在建模及计算方面的局限性,将有限元法引入到机车车辆/轨道大系统的垂向耦合振动研究中来.为了真实模拟在轨道上不同位置的轮轨接触关系,用有限元参数二次规划法求出了轮轨等效接触刚度曲线,建立了统一的机车车辆/轨道耦合系统.通过建立系统的有限元分析模型,利用精细时程积分算法求解系统振动方程,分析研究了机车车辆在无限长轨道上运行时,在轨道不平顺激扰下,轮/轨间相互作用力、机车车辆/轨道系统中各部件的振动加速度及位移变化规律.研究结果表明,该方法不但可行,而且具有其它传统方法无可比拟的优越性.  相似文献   

12.
根据高速列车—无砟轨道—桥梁系统运动的特点,建立了适合该问题动力学分析的新型车辆单元和轨道—桥梁单元,运用有限元方法和Lagrange方程,推导了两种单元的刚度矩阵、质量矩阵和阻尼矩阵。整个列车—轨道—桥梁系统被离散为车辆单元和轨道—桥梁单元,其中一节车辆离散成一个车辆单元,轨道—桥梁系统离散成四层梁单元。最后通过一个实例计算对整个系统进行垂向振动特性分析。  相似文献   

13.
模态分析在轨道振动特性研究中的应用   总被引:4,自引:0,他引:4  
本文首次将模态分析理论应用于轨道结构振动特性的研究中,介绍了轨道结构动力响应的振型叠加法,采用传递特性分析评价了轨道结构减振隔振的措施。通过落轴试验,测得轨道结构各部分的传递函数,然后应用传递函数模态分析法,获得了垂向振动的固有频率,主振型及阻尼比。研究结果表明,模态参数理论可简化轨道振动的理论分析;试验模态分析技术能探索轨道结构的固有振动特性;使最终实现轨道定量分析成为可能。  相似文献   

14.
通过对实测数据的分析,初步得到轨道结构振动的频率结构和振幅范围,并与理论分析进行比较,为选择合理的模型提供参考。  相似文献   

15.
列车通过时轨道结构振动分析   总被引:2,自引:0,他引:2  
  相似文献   

16.
不同无砟轨道类型对车辆动力学特性影响的数值分析   总被引:1,自引:1,他引:0  
利用车辆-轨道耦合动力学理论,建立了不同类型无砟轨道垂向耦合动力学模型,分别计算了整体式无砟轨道、板式无砟轨道以及浮置板式无砟轨道在列车运行下的振动响应,分析比较系统振动响应受无砟轨道道床类型、车速、不平顺波深、扣件刚度和板下弹簧刚度的影响。结果表明,系统振动响应均随车速的提高而增大;车速、不平顺波深、扣件刚度和板下弹簧刚度对整体道床式无砟轨道系统振动响应影响最大,板式无砟轨道次之,对浮置板式无砟轨道系统振动响应影响最小;相对而言,浮置板式无砟轨道动力特性最好,其次为板式无砟轨道,整体式无砟轨道的动力特性最差。  相似文献   

17.
18.
为研究跨座式单轨列车与预应力混凝土轨道梁的动力特性,建立了列车-轨道梁空间耦合振动模型.车辆运动微分方程由拉格朗日方程导出,轨道梁用模态综合法建立其运动微分方程.计算了不同车速下车辆和轨道梁的动力响应.结果表明:车速对轨道梁挠度的影响较小,但对加速度影响较大;在计算车速下,轨道梁具有良好的动力特性,列车能安全舒适地通过此轨道梁.  相似文献   

19.
从智能运维的角度阐述了利用结构振动损伤识别技术进行轨道车辆结构健康监测的重要性和必要性;根据不同损伤识别的适用范围,将结构振动损伤识别技术分为基于模型的方法和基于响应信号的方法;结合结构健康监测中损伤识别的不同层次,分析了以结构损伤的存在性、类型、定位和程度表征的不同识别方法;概括了轨道车辆运维过程中损伤识别技术的典型特征,讨论了基于模型的损伤识别中固有频率、模态形状、曲率模态等与模态参数有关方法的优缺点;分析了基于响应信号方法的应用现状和发展趋势,并阐述了模型修正和优化技术在结构损伤识别中的应用;重点分析了车辆关键部件故障诊断与监测中损伤识别技术的实施,讨论了结构振动损伤识别技术在未来轨道车辆智能运维策略中的主要发展方向,展望了未来轨道车辆部件的状态检修策略和智能运维技术。研究结果表明:轨道车辆的智能运维应该充分考虑结构振动损伤识别技术与人工智能等新技术的结合;大数据驱动的结构振动损伤识别技术能够更好解决车辆状态实时监测的技术难点;考虑复杂环境因素对轨道车辆结构部件损伤识别技术的影响,需要不断完善基于耦合振动效应的结构振动损伤识别技术及方法。  相似文献   

20.
有碴轨道结构空间振动分析   总被引:2,自引:1,他引:2  
随着列车走行速度的提高和轴重的增加,普通有碴轨道频繁发生病害,导致养护维修费用大幅攀升。采用弹性支承交叉梁系模型,利用有限元法,求得了有碴轨道结构自振频率及其在自由轮对作用下的谐振响应,从振动理论上解释普通有碴轨道结构频繁破坏的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号