首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
形变Cu-17.5%Fe原位复合材料热稳定性研究   总被引:1,自引:0,他引:1  
形变Cu-17.5%Fe原位复合材料在低于400℃退火,其力学性能和电性能变化不大.在高于450℃退火,随加热温度升高,强度和杨氏模量下降,电阻率提高.用扫描电镜观察了Fe纤维形态的变化,测定了Fe纤维断开的有关数据,并进行了数值模拟.结果指出,Fe纤维形状从片状到颗粒状变化可能有三种历程:直接边缘球化;晶界分裂→柱状化→Rayleigh扰动;直接柱状化→Rayleigh扰动.并分析获得其计算模型,经计算比较,和实验值具有很好的一致性.  相似文献   

2.
研究了采用感应加热熔炼和室温变形制备Cu-13.2vol.%Fe原位复合材料导线的工艺过程,并探讨了降低电阻率的中间热处理作用,用光学显微镜、SEM和TEM观察分析了变形过程中组织结构的变化,结果指出,Fe树枝晶的变形是不均匀的,中间热处理有利于均匀变形,在较大变形量下,Fe树枝晶形成纤维,空间形态为薄片状,相结构为α-Fe,测定了力学性能和电阻率,结果是变形量越大,强度越高,电阻率越大。经中间热处理,可在不降低强度的同时,大大降低电阻率,几个较好的电导率/极限拉伸强度组合为:70.6%IACS/659MPa、64.6%/752MPa和51.9%IACS/880MPa。  相似文献   

3.
The mechanical properties and microstructure of as-cast Nb-Ti microalloyed steel at different temperatures and cooling rates are investigated in this paper. The III brittle zone (700?C900°C) is revealed. The reduction of the hot ductility is due to the film-like proeutectoid ferrite or the Nb(C, N) precipitates along the austenitic grain boundaries. In the temperature range of 850?C1 000°C, with the increase of the cooling rate, the hot ductility decreases. However, in the range of 650?C850°C, the appearance of large volume fractions of ferrite on austenite grain boundaries minimizes the effect of cooling rate on hot ductility. When the cooling rate is 10°C/s, austenite transforms more quickly to ferrite and at a lower temperature a larger amount of ferrite nucleates and precipitates in the grain, which leads to a sharper improvement in the hot ductility at 650°C.  相似文献   

4.
Based on the advantages of perforated ventilation characteristic of perforated ventilation pipe embankment and large porosity of blocky stone embankment, composite embankment with ventilation pipe and blocky stone is more efficient to protect the underlying permafrost. The temperature fields and cooling effect of composite embankment with air doors are simulated by examining the effects of holes' position drilled in the pipe, diameter in pipe and density of holes. It is shown that the underlying permafrost temperature obviously reduces by composite methods, the location of 0℃ isotherm raises significantly, especially permafrost temperature under the center and shoulder of embankment reduces more quickly, the composite embankment with holes drilled in the lower side of pipe is the most efficient, the increase of diameter has a slight influence on the 0℃ isotherm's raising, and the density of holes slightly influences the raising of 0℃ isotherm.  相似文献   

5.
This work deals with the reheating process for semi-solid thixoforming of ZL101 (AlSi7Mg) alloy. The semi-solid state can decrease the viscosity and the resistance while sheared because of the evolutional behavior, which is characterized by a solid-like behavior at rest and a liquid flow during shearing. The microstructure evolution of ZL101 alloy at different temperatures from 540 to 580 °C has been studied. Results show that the eutectic temperature can affect the transformation speed of semi-solid structure. Semi-solid microstructures with high solid fraction can be obtained by controlling the reheating time in less than 20min, while at the temperature lower than the eutectic temperature it needs more than one hour. Another character of semi-solid ZL101 alloy is the segregation of microstructures in semi-solid state, in which the liquid phase between the solid phases can flow freely and lead to the shrinkage of the sample during the heating process. As the holding time goes on, more shrinkage holes appear and change the surface of the specimen. These shrinkage holes are replenished by the liquid phase during compression deformation, resulting in the segregation of the components.  相似文献   

6.
The goal of this study is to establish relationships between the hot compression deformation behaviors and the fractal dimension of primary phase morphology of TA15 titanium alloy using the analytical methods of metallurgical microscope and transmission electron microscope coupled with box-counting dimension method. The hot compression deformation behaviors vary with decreasing fractal dimension owing to the change of microstructure caused by different parameters of the hot compressive deformation. The results indicate that TA15 alloy shows dynamic recrystallization characteristics at deformation temperature lower than 850 °C while fractal dimension exhibits a moderate decreasing trend with the temperature increasing, and shows dynamic recovery characteristics at deformation temperature higher than 850 °C while fractal dimension reduces rapidly with the temperature increasing. The fractal dimension displays non-linear relationship with fraction of primary phase and with aspect ratio of primary phase.  相似文献   

7.
高强度高电导率材料研究概述   总被引:8,自引:1,他引:8  
分析了长脉冲高强磁场导体材料的性能要求-高强度高电导率的结合,探讨了粒子强化材料和复合材料的强化机理和降低电阻率方法,回顾了形变Cu基原位复合材料的研究现状,分析了存在的问题和可能的应用场合.  相似文献   

8.
通过原位反应常压烧结法制备了一种新型的TiCx/Fe(Al,Ti)复合材料,并对Ti3AlC2与Fe的原位反应途径及制备工艺和性能进行了研究,结果表明,Ti3AlG从760℃附近就开始与Fe初步发生原位反应,生成TiCY相.随着烧结温度达到1100℃,Ti3A1G相的衍射峰完全消失,随着温度继续升高到1400℃的烧结温度范围内,所生成的复合材料物相均保持为TiG和Fe(A1,Ti)固溶体不变.反应后,原料中微米尺寸的Ti3AlG颗粒分裂成尺寸约500nm左右的片状小颗粒,各小颗粒与Fe基体紧密连接的.而复合材料的力学性能随着Ti,~C2的体积含量发生变化,当Ti3AlG含量达到时20%,复合材料抗弯强度达到最大为266MPa.  相似文献   

9.
为综合解决传统钢-混凝土组合结构中混凝土桥面板自重偏大和负弯矩区易开裂的问题,引入超高性能混凝土(ultra high performance concrete,UHPC)华夫板代替普通混凝土桥面板,提出一种新型组合梁—装配式UHPC华夫型上翼缘组合梁. 以某典型3跨连续梁桥为研究对象,分别建立3跨连续梁整体和中支座区域梁段的有限元模型,研究了不同荷载工况下新型装配式UHPC华夫型上翼缘组合梁的受力性能,分析了UHPC华夫型上翼缘关键设计参数对该新型组合梁力学性能的影响规律,对比研究了组合榫型剪力槽与栓钉型剪力槽对该新型组合梁受力性能的影响. 研究结果表明:在恒 + 活组合作用下,中支座负弯矩段华夫型上翼缘纵肋底缘和面板最大拉应力均小于配筋UHPC的抗拉强度设计值;当UHPC华夫型上翼缘纵、横肋宽90 mm、高200 mm,纵肋间距700 mm,横肋间距600 mm,面板厚60 mm时,UHPC华夫型上翼缘受力较为合理;组合榫型剪力槽更适用于新型装配式UHPC华夫型上翼缘组合梁.   相似文献   

10.
AbstractThe evolution in type,size and shape of carbides in as-cast American Iron and Steel Institute(AISI) M2 high-speed steel before and after annealing were investigated.The micromechanism which was responsible for those changes was also analyzed and discussed.At the initial stage of reheating,metastable M2C-type carbide decomposed continuously.M6C-type carbide nucleated at the interface of M2C/γfirstly and grow from surface to center.Then MC-type carbide nucleated at both surface of M6C/M6C and inner of M6C.With the increasing decomposition of the metastable M2C-type carbide,the rod-shaped construction of eutectic carbide began necking,fracturing and spheroidizing gradually.Held enough time or reheated at higher temperature,particle-shaped product aggregated and grew up apparently,while secondary carbide precipitated in cell and grew up less sig- nificantly than the former.Based on the above microstructural observation,the thermodynamic mechanism for decomposition of M2C carbide,for spheroidization of products,and for the growth of particles were analyzed.The rate equations of carbides evolution were derived,too.It shows that the evolving rate is controlled by diffusion coefficients of alloy atoms,morphology of eutectic carbides and heating temperature.  相似文献   

11.
30CrMnTi合金钢热处理工艺研究   总被引:1,自引:1,他引:0  
针对30CrMnTi合金钢进行了相应的淬火和回火工艺试验研究,通过系列实验比较了不同浓度的AQ251淬火液和回火温度对30CrMnTi合金钢热处理后的组织和硬度的影响。结果表明AQ251淬火液在高温阶段600℃和低温阶段350℃有较大冷却速度;随着淬火介质浓度的减小,30CrMnTi合金钢淬火硬度呈上升趋势;在350℃以下回火,回火温度对硬度影响不明显,超过350℃回火,硬度随温度增加降低显著。  相似文献   

12.
The experimental system of heat loss of all-glass evacuated solar collector tubes (evacuated tube) is firstly designed and constructed, which uses electric heater as thermal resource. The equilibrium temperatures are less than ±1℃ during the test, and the temperature differences of up/middle/low node in the tube are less than 1 ℃, 3 ℃, and 7℃ respectively. The heat loss of evacuated tube increases about 2.7% with vacuum state of 0.01-1 mPa, and it has the best performance at tube temperature of 20-280℃. The invalidation tube (> 200 mPa) has the biggest heat loss that increases linearly with the tube temperature. The evacuated tubes with the vacuum of 0.01-1 mPa are suitable for most solar adsorption refrigeration.  相似文献   

13.
The influence of soaking temperature on microstructure of high temperature multi-pass compression deformation for two low carbon steels (steel A: w C = 0.032% and w Mn = 0.25%; steel B: w C = 0.165% and w Mn = 0.38%) is studied on the thermal-mechanical simulator in order to rationalize the hot-rolling schedule of low-carbon steel and to promote the low-temperature heating technology. The results show that the microstructures of steel A are almost not affected by reducing soaking temperature, but the acicular ferrite forms in steel B when the soaking temperature is reduced from 1 200 to 1 170°C, due to its smaller initial austenite grain size according to recrystallization kinetics theory.  相似文献   

14.
采用一种简单低成本的方法,以蔗糖作为碳源,在氮气气氛下以不同温度焙烧合成纳米SnO2/C复合材料.并对所得样品进行XRD,TEM表征及电化学性能测试.XRD结果表明复合材料中碳是无定形的.透射电镜(TEM)结果显示SnO2平均粒径为10 nm左右,并被碳均匀包裹.纳米SnO2/C复合材料作为锂离子电池负极材料呈现高的库伦效率和较好的循环稳定性.  相似文献   

15.
采用一种简单低成本的方法,以蔗糖作为碳源,在氮气气氛下以不同温度焙烧合成纳米SnO2/C复合材料.并对所得样品进行XRD,TEM表征及电化学性能测试.XRD结果表明复合材料中碳是无定形的.透射电镜(TEM)结果显示SnO2平均粒径为10nm左右,并被碳均匀包裹.纳米SnO2/C复合材料作为锂离子电池负极材料呈现高的库伦效率和较好的循环稳定性.  相似文献   

16.
以Ti2AlC和Cu粉作为原料,分别采用滚筒球磨和高能球磨对原料粉进行预混处理,在1 150℃下原位热压反应制备了TiC0.5/Cu(Al)复合材料.实验结果表明,Al从Ti2AlC溶出进入Cu中,Ti2AlC分解并转变成TiC0.5相,然而滚筒球磨制备的复合材料中生成少量AlCu2Ti相.通过对原料粉高能球磨处理,制备后的复合材料AlCu2Ti相消失,细小的TiC0.5颗粒均匀分布于基体中.两种不同方法制备的复合材料的弯曲强度和维氏硬度试验结果表明,高能球磨工艺能提高TiC0.5/Cu(Al)复合材料的弯曲强度,同时维氏硬度略有降低.其中,高能球磨处理后制备的27% TiC0.5/Cu(Al)复合材料的弯曲强度达到981 MPa,维氏硬度为2.43 GPa.  相似文献   

17.
对不同纤维掺量的沥青混合料进行马歇尔、车辙、劈裂对比试验,并评价掺纤维沥青混合料的高温稳定性及低温抗裂性。  相似文献   

18.
Near infrared (NIR) light induced photothermal effect for Fe3O4 nanoparticles, contained in Pluronic F127 micelles, has been studied and it exhibits high photothermal converting efficiency. Heat is found to be rapidly generated in micelles containing Fe3O4 nanoparticles by NIR laser irradiation. Upon irradiation at 808 nm light and with mass concentration of Fe3O4 nanoparticles in 4 g/L, the micelle temperature increase is higher than 34°C for 10min irradiation. The maximum temperature of micelles containing Fe3O4 nanoparticles in 4 g/L reaches 62°C.  相似文献   

19.
A 2D finite element model was established for inertia friction welding of GH4169 nickel-base superalloy based on the ABAQUS environment. The remeshing and map solution techniques were adopted to solve the problem of element distortion. The effect of rotation speed on the temperature field and axial shortening of joints was investigated. The results show that the interface temperature increases rapidly to higher than 900°C within 1 s. And then, it increases slowly to a quasi-stable value. The axial shortening begins to augment quickly when a uniform interface temperature field has formed and the plasticized material is extruded from the interface to form an obvious flash. The rotation speed of the flywheel controls the welding process and has a significant influence on the temperature evolution and axial shortening of joints.  相似文献   

20.
通过粉末冶金法制备了银基AgZnO/AgZnO-CdO/AgCdO叠层材料和AgSnO2梯度触头材料,这种设计方法从功能梯度的角度出发,更准确地考虑到了电接触材料的实际工作情况。作为一种全新的电接触材料的设计方法,初步考察了两种复合材料的电导率、热导率及电侵蚀前后接触表面的形貌和元素成分分布情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号