首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究目的:当大跨度自锚式悬索桥跨越通航流域不能采用常规支架法施工主跨钢箱梁时,首次应用"先斜拉,后悬索"的总体施工方案,该方案中最重要的过程就是斜拉桥向悬索桥的结构体系转换。针对体系转换中吊索张拉及主索鞍顶推在数值模拟中的实现,本文应用与无应力状态控制法相通的降温法进行分析。以该方法为指导,分析模拟建成后是世界上最大跨度600 m的鹅公岩自锚式悬索桥的体系转换全过程,阐述基于ANSYS的斜拉-悬索两个缆索支撑系统耦合模型中各个关键构件的单元选取及其参数确定的方法和技巧。研究结论:通过数值模拟计算得到体系转换过程中关键构件在整个过程中的变化规律,获得结论如下:(1)利用无应力索长可以将两种独立的斜拉-悬索缆索支撑系统实现耦合模型进行体系转换研究;(2)降温法是将吊索的建模长度降温至其无应力索长来模拟吊索张拉的过程,也可以模拟将主索鞍的预偏量分步降温至接近于零而实现主索鞍的顶推;(3)本文所研究降温法适用于计算大跨径自锚式悬索桥中体系转换过程中吊索张拉和主索鞍顶推分析。  相似文献   

2.
研究目的:桥梁结构施工日趋大型化和复杂化,给施工控制技术带来新的挑战。为克服这一难题,一种有效的施工方法——顶推施工法应用前景越来越广阔。本文依托厦深联络线位于R=800 m圆曲线上PC连续箱梁的顶推施工控制,采用数值模拟与有限元仿真模拟的方式,施工前模拟计算出顶推法施工方案是否满足安全要求。研究结论:(1)导梁在顶推过程中,最大拉压应力和最大剪应力都出现在导梁根部;(2)分别在导梁根部最大负弯矩和最大正弯矩工况下,埋入混凝土部分的钢导梁各向正拉压应力、竖向剪应力均小于Q345钢材相应的许用应力,满足规范要求;(3)导梁翼缘和腹板高强螺栓连接在顶推荷载作用下,高强螺栓连接最不利截面受力满足要求,仅腹板螺栓连接安全储备略小;(4)本研究结果可为今后为圆曲线上PC连续箱梁桥顶推施工控制提供参考。  相似文献   

3.
总结大跨度连续刚构桥合龙段施工的影响因素及中跨合龙顶推力计算方法,并针对黔江某特大预应力连续刚构桥进行顶推力及顶推位移计算。采用有限元分析方法,分析中跨顶推合龙施工对该桥梁在恒载作用和10 a收缩徐变作用下的主梁跨中挠度、主梁应力、主墩的弯矩及应力状态的影响,证明顶推合龙施工的合理性及正确性。分析结果表明:顶推施工能改善桥墩长期受力状态,避免桥墩墩底出现拉应力,配合预拱度设置,能够有效解决跨中下挠的病害。最后,验证了针对本桥所计算出来的顶推力及顶推位移能满足安全施工及运营阶段的正常使用。  相似文献   

4.
索梁锚固结构是大跨度钢箱梁斜拉桥的关键受力构件之一,多采用锚箱式。本文研究的新型索梁钢锚箱,其主要受力构件分别与主梁边腹板和风嘴板焊接,形成双挑式索梁钢锚箱。采用计算分析与模型试验相结合的方法,对索梁钢锚箱在铁路荷载下的传力原理、应力分布以及疲劳性能进行研究。结果表明:该结构设计合理,索力传递方式明确,各板件应力分布较均匀。疲劳试验结果表明:双挑式索梁钢锚箱在铁路荷载200万次作用下,力学性能未发生改变,具有良好的抗疲劳性能和足够的安全储备。  相似文献   

5.
研究目的:有关钢桁梁顶推施工的研究大多局限于杆系有限元的静力学分析,然而钢梁顶推是一个动态过程,桥墩-钢梁-滑块-滑道梁相互作用成为三维空间体系,力学机制复杂,目前对顶推动态过程的计算分析较为少见。鉴于此,本文采用数值模拟和试验监控相结合的手段,对三门峡黄河公铁两用桥钢梁顶推过程进行动力学分析,以便明确各细部结构的受力状况,为主体结构的安全施工提供技术保障。研究结论:(1)顶推过程中墩身承受交替变化的拉/压应力,初始阶段的拉应力和变形较大,随着向托梁中部顶推,桥墩拉应力和变形减小,易开裂区向弧形帽梁底部扩展;(2)滑道梁的应力和变形随着滑块接近托梁中部逐渐减小且分布趋于均匀,最大应力出现在腹板与加劲肋连接位置;(3)滑块在顶推初始阶段出现类似"爬坡"的现象,与滑道梁接触面的受力、变形不均匀,且存在静-动摩擦系数的转变,导致桥墩在顶推开始时刻承受一定水平力;(4)本文研究可用于指导高墩多跨连续钢桁梁的顶推施工。  相似文献   

6.
斜拉桥索梁锚固结构承受着巨大的动静力荷载,其安全性和耐久性是斜拉桥控制设计的关键点。以宜宾临港长江公铁两用大桥双拉索锚箱式索梁锚固结构(钢锚箱)为研究对象,取该桥塔最大索力处对应的钢锚箱进行1∶3缩尺模型试验,结合有限元计算结果进行对比验证,系统地研究钢锚箱的传力机理;对钢锚箱重要板件进行厚度参数敏感性分析,探讨其对索塔锚固区受力性能的影响。分析结果表明,在屈服荷载下,钢锚箱大部分结构受力情况良好,重要板件应力均处于屈服应力以下,证明结构安全可靠;钢锚箱内部锚腹板厚度对锚箱整体结构应力分布影响较大,随着锚腹板厚度增加,锚箱式锚固构造整体应力分布趋于均匀,峰值应力变小。  相似文献   

7.
为了解决桥梁顶推法施工由于正负弯矩交替出现、预应力筋作用以及顶推装置的影响导致连续梁梁体的开裂问题,以厦深联络线连续梁施工为背景,开展对预应力混凝土连续箱梁顶推施工中结构"零损伤"的研究。借助midas桥梁建模软件,仿真分析连续箱梁在不同的预应力张拉方式下,不同顶推阶段中导梁及箱梁的上下缘应力,并通过实测数据对比,验证仿真分析的可靠性。研究结果表明:(1)在顶推的各个阶段,部分预应力张拉方案较全部预应力张拉方案主梁及导梁的拉压应力均变小;(2)采用预应力部分张拉方案解决了顶推过程中箱梁顶板上沿拉应力超限、预应力处理不当导致的梁体裂缝问题;(3)可采用增加布料孔和振捣孔、定制钢底模、设置沉降差等措施控制混凝土质量,为后续顶推施工箱梁"零损伤"提供条件。  相似文献   

8.
预应力混凝土箱梁桥腹板主应力影响因素研究   总被引:4,自引:0,他引:4  
研究目的:为控制大跨度箱梁桥腹板斜裂缝的出现,对腹板主应力的两项影响因素,竖向预应力筋的构造形式和腹板厚度变化方式进行了研究。 研究方法:在腹板厚度的各种变化形式下,采用桥梁分析软件对腹板主拉应力进行了计算和分析。同时,针对普通形式竖向预应力筋的缺点,提出了另外两种竖向预应力筋的布置构想;并采用Ansys软件对竖筋各种构造形式下的腹板主应力进行了空间有限元对比分析。 研究结果:得出了腹板厚度不同变化情况下的腹板主应力曲线;竖向预应力筋不同构造形式下腹板主应力变化曲线和局部梁段节点第一主应力云图。 研究结论:(1)腹板厚度变化方式的取用是一个重要的裂缝控制因素,应尽量采用较为缓和的变化方式。(2)与普通型竖筋相比,U型竖筋的优势是可以使U型区域内的腹板混凝土受到整体预压应力作用,限制腹板主拉应力的出现和大小。新型竖筋构造形式对腹板主应力的影响分析,对连续体系箱梁的竖筋合理布置提供了参考意见。  相似文献   

9.
研究目的:郑北大桥索梁锚固结构采用锚拉板结构形式,该区域构造复杂,焊缝交错,部分位置存在明显的应力集中现象,恒载作用下易发生塑性破坏,反复荷载作用下易产生疲劳破坏。通过建立精细化有限元模型,分析锚拉板式索梁锚固结构的易损部位,对局部细节进行设计参数优化,从而改善其恒载和活载下的受力性能。提取疲劳易损部位热点应力,通过热点应力S-N曲线和线性累积损伤理论计算其疲劳寿命,验证参数优化效果。研究结论:(1)在原设计的基础上适当优化锚拉板厚度能有效改善锚拉板式索梁锚固结构恒载下受力性能,防止材料塑性破坏;(2)经热点应力法计算疲劳寿命验证,在原设计的基础上适当优化圆形过渡区半径、锚拉板厚度、锚筒厚度能提升锚拉板的疲劳寿命;(3)本文研究结论可运用于今后的斜拉桥锚拉板式索梁锚固结构的设计中,以供相关设计人员参考。  相似文献   

10.
研究目的:贵广铁路东平水道特大桥为(85.75+286+85.75)m双拱肋钢桁架拱桥,桥面采用带水平K撑的正交异性板结构,该桥式结构在国内是首次应用。通过对该桥主桁、桥面系和纵横向联接系进行受力特征分析,以及对受力复杂的G11节点进行局部精细空间有限元分析,为该桥的设计提供了依据,研究结果可供其他同类型桥梁参考。研究结论:该桥主桁杆件轴向受拉和受压的最大绝对值比较接近;受力状态比较合理,桥面系各构件受力均满足设计要求;G11节点局部受力情况复杂,各构件最大应力均未超过钢材的屈服应力。  相似文献   

11.
钢锚箱索塔锚固区受力机理   总被引:7,自引:0,他引:7  
根据苏通大桥索塔锚固区钢锚箱的实际尺寸进行有限单元计算分析和节段足尺模型试验研究。有限单元分析采用ANSYS程序,全面分析钢锚箱在荷载作用下的应力,得知钢锚箱中受力最大位置发生在侧面拉板靠下部的圆倒角处,钢筋混凝土结构的最大主拉应力出现在索孔出口下边缘处。节段足尺模型试验研究表明,钢锚箱实测最大应力位置与计算分析结果基本相同,但应力水平稍低一些;混凝土结构中拉应力较大的位置出现在斜拉索索孔出口、内壁倒角、侧壁内侧等处;剪力钉应力最大者是最外侧的几列,且表现为从外侧列向中间列逐渐减小;试验的顶推荷载水平分力约75.7%由钢锚箱侧面拉板和横隔板承担,竖向分力通过端板上的剪力钉与混凝土之间的相互作用传递到混凝土上。  相似文献   

12.
标准混凝土箱梁在我国铁路建设中得到了广泛应用。铁路应用某新型标准混凝土箱梁,采用单排大吨位的预应力锚固形式,共计在梁端设置了17个预应力锚固区。相较于武广客专等应用的双排预应力钢束标准混凝土箱梁,其腹板预应力锚固区的局部应力分布及精细化力学行为值得进一步研究。通过建立新型标准混凝土箱梁空间有限元模型,考虑材料的非线性行为,对箱梁端部预应力锚固区的局部应力场及裂缝开展高精度计算分析。研究结果表明:预应力钢束张拉过程中锚固区混凝土最大主压应力位于N6(腹板最上部预应力钢束)的喇叭口边缘,为33.45 MPa;最大主压应力小于其抗压极限强度值,集中在喇叭口的环向范围内,整体呈现区域小、收敛快的分布形式;标准混凝土箱梁的主拉应力值随预应力钢束张拉不断增大,其中N3(腹板最下部预应力钢束)区域的主拉应力变化最为显著,张拉完成后,锚固区混凝土最大主拉应力达到了混凝土抗拉极限强度,主要分布于锚垫板四周,最大裂缝出现在N6锚垫板上边缘的两角处,裂缝宽度为0.088 mm。混凝土封锚可有效降低预应力锚固区的开裂风险,但在实际服役环境中仍应对此区域进行重点关注。  相似文献   

13.
预应力混凝土梁拱组合桥梁顶推施工新工艺   总被引:1,自引:0,他引:1  
为避免对铁路运营的干扰,上跨既有铁路大跨度桥梁常用的施工方法有转体及顶推法。本桥采用预应力混凝土梁拱组合体系,系梁采用顶推法施工,系梁总长131 m,分3段浇筑36.5 m+86.1 m+8.4 m,中间段86.1 m长为顶推梁段,两侧为原位现浇。设计顶推最大跨度达38.5 m,顶推过程中需要设置前后钢导梁,其长度分别为28 m及17.0 m,顶推距离为78.3m,顶推运行轨迹为半径2 300 m竖曲线,顶推重为52 809 kN。顶推的特点有临时墩斜交布置、顶推轨迹为竖曲线,顶推过程中结构空间受力明显。同时对顶推用临时墩、钢导梁、侧向限位及拉锚器等也加以介绍。  相似文献   

14.
依托一预应力混凝土连续箱梁跨既有线路顶推施工工程,针对工程特点制定了各施工阶段的监测方案,测试了从梁体浇筑阶段的预应力张拉至落梁阶段全施工过程中结构的应力及变形。监测结果表明:预应力张拉阶段梁体张拉效果满足设计要求;顶推系统工作正常,受力状态与计算值吻合良好;顶推阶段梁体和导梁左右侧受力存在一定的不均匀性,但均在安全范围之内;通过监测数据对梁体进行纠偏,使得整个顶推过程中梁体横向偏位很小,基本按照设计轨迹以曲线路径行走;落梁阶段梁体累积应变较小,落梁过程中梁体未产生内力。  相似文献   

15.
刚构体系多塔矮塔斜拉桥可通过在主梁合龙前施加顶推力使桥墩向边跨侧预偏,以减小主梁收缩徐变对桥墩受力的影响。将成桥状态下的桥墩应力作为目标函数,设置约束方程控制合龙施工时的桥墩应力,利用多目标线性规划方法确定合龙顶推力。计算结果表明,采用迭代计算可考虑顶推力对混凝土收缩徐变的影响,得到的合龙顶推力可使运营阶段桥墩截面拉应力最小;合龙顶推力将改变结构的应力状态,其对主梁应力状态的影响很小,但对桥墩的应力状态改变较大,由此而产生的徐变效应不能忽略;墩底约束刚度对最优顶推力的确定有一定影响,在实际顶推合龙前应进行试顶推以修正模型的墩底约束刚度。  相似文献   

16.
针对大跨度铁路斜拉桥活载重、索梁锚固区应力幅度变化较大等特点,宁波铁路枢纽北环线甬江特大桥采用了全新设计的双挑式索梁钢锚箱。作为双挑式索梁钢锚箱的主要受力构件,支承板和承压板分别通过其双侧焊缝与主梁边腹板和风嘴板焊接在一起,形成由主梁风嘴板与边腹板共同承受并传递索力的新型索梁锚固结构。采用仿真分析与模型试验相结合的方法,进行该新型索梁锚固结构传力机理及应力分布的研究。结果表明:采用新型索梁锚固结构后,通过支承板与主梁边腹板和风嘴板间的连接焊缝,以受剪的形式将大约94%的斜拉索索力传递给钢箱主梁;虽然新型索梁锚固结构的各关键受力构件均存在一定程度的应力集中,但与传统的钢锚箱相比,可有效解决偏心弯矩引起支承板焊缝顶端应力集中严重的问题。  相似文献   

17.
连续刚构桥中跨合龙顶推主要是为了调整两合龙面间距,改善结构应力和内力,使得成桥后结构的内力和应力处于安全使用状态。以小河沟特大桥为分析对象,建立Midas/civil有限元模型,计算分析本桥处于最大不平衡状态和成桥状态时,中跨合龙段拟采用的两种顶推方式对主梁结构线形、应力和内力的影响,并依据现场情况,确定最佳顶推方式。现场监控表明,采用的顶推方式达到了预期的目的,确保了小河沟特大桥成桥线形和受力处于较为合理的状态。  相似文献   

18.
在软弱地层施工地铁隧道联络通道会造成隧道结构局部应力集中,严重时可导致管片开裂等现象。为解决这一问题,利用ABAQUS有限元软件建立主隧道与联络通道结构模型,通过改变联络通道掘进长度与联络通道底部基床系数等因素,探究机械法联络通道T接隧道建设对主隧道结构的影响。研究发现:联络通道施工荷载使隧道发生横向扭剪变形,可导致施工过程中纵向顶推转角发生变化;随着联络通道掘进长度的增加,主隧道与联络通道管片应力不断增大;联络通道靠近主隧道上方管片受力变形大于主隧道上方(应力增加17%、变形可达4倍);随着基床系数减小,隧道结构整体受力变形呈增大趋势(应力增大44%、沉降增大34%)。研究成果可为相关工程安全建设提供参考。  相似文献   

19.
大跨度斜拉桥索梁锚固区三维有限元仿真分析   总被引:8,自引:1,他引:7  
采用不同建模方法,对大跨度斜拉桥索梁锚固结构—钢锚箱进行三维非线性有限元仿真分析,并将计算结果与钢锚箱静载模型试验结果相比较。结果表明,实体单元加接触单元法计算模型,即用实体单元模拟钢锚箱底部的锚垫板、用空间高阶壳单元模拟锚箱中其他钢构件及主梁、用非线性接触单元模拟锚垫板与承压板间不焊接但紧密压贴的关系,能够较真实、合理地反映钢锚箱的实际受力情况。钢锚箱虽然板件较多,但整体性能好,索力传递流畅,锚箱锚固顶、底板上2条焊缝传递索力,承压板与主梁焊缝主要传递抗弯作用力,因此要保证各板件接触、焊接良好,不能产生大的残余应力和残余变形。随着荷载的增长,钢锚箱高应力区应力增长速度减缓,部分低应力区应力增长加快,这对受载有利。仿真计算时,要注意壳单元角点局部位置可能出现应力计算失真。  相似文献   

20.
铁路特大桥钢箱梁顶推过程受力分析及改善方法   总被引:3,自引:0,他引:3  
某铁路在建特大桥的2×90 m连续钢箱梁叠合钢箱拱主桥斜向约22°跨越交通繁忙的高速公路.钢箱梁的架设采用胎架上拼装再顶推的方法.3个主墩间没置6个临时支墩,且其中4个临时支墩的横盖梁需跨越高速公路路面,跨度达18 m,顶推中钢箱梁偏在一侧.运用ANSYS软件对顶推过程中钢箱梁的位移和应力进行分析,研究前端墩处钢箱梁的应力分布、应力超限原因及改善方法.结果表明:计算必须考虑钢箱梁、横盖梁、滑道等的变形;滑道和钢箱梁的纵、横向受力很不均匀,直接顶推时钢箱梁的应力超限;减少各滑道横桥向高差可有效改善钢箱梁受力状态;较小的滑道橡胶支座刚度可有效改善各滑道纵向受力的不均匀性.滑道支座采用弹性模量为500 MPa的橡胶材料,一次抬高临时支墩横盖梁远离钢箱梁端支座3 cm,并将中间滑道2,3再抬高2~3 mm时,顶推过程中钢箱梁应力不超过190 MPa,满足强度要求并留有一定的余量.该措施已被应用于施工中,取得了很好的效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号