首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
随着我国重载和高速铁路的发展,钢轨波磨问题日益突出。选取2条半径为300 m的曲线为观测对象,分析钢轨打磨前后钢轨波磨的波长和波深。基于C_70型铁路货车,在多体动力学软件中建立车辆-轨道耦合动力学模型,研究钢轨打磨前后轮轨动力学性能及振动加速度的变化。结果表明:钢轨打磨不会改变波磨波长,但能有效减小波深幅值,甚至完全消除波磨;波磨有残留时其波深幅值会在波长不变的情况下继续增加,而完全消除波磨区域仍会在一定时间后继续出现波磨,但波长会发生变化;钢轨打磨能明显降低机车车辆的轮轨作用力和振动加速度,波深幅值由0.78 mm降至0.12 mm后,重车和空车的轮轨垂向力分别降低23.7%和21.9%,对应的轨枕最大垂向振动加速度分别降低78.4%和81.1%。  相似文献   

2.
江万红  王显  韦凯  王平 《铁道建筑》2021,(5):139-143
为明确曲线波磨地段地铁列车的降速原则与钢轨打磨限值,利用多刚体动力学软件UM建立车辆-轨道耦合模型,分析不同运行速度及波磨状态下的轮轨系统动力响应,从而明确波磨情况下的安全车速与不同波长下的钢轨打磨标准.研究结果显示:钢轨短波波磨会导致轮轨动力响应发生较大变化,致使车辆脱轨风险增大,运行安全性降低;波磨线路应降速至80...  相似文献   

3.
以朔黄铁路为例,针对钢轨廓形打磨在打磨重载铁路过程中存在的问题,采用SIMPACK动力学仿真软件建立了实参数轮轨耦合动力学模型,对比分析了打磨前后轮轨作用力、轮轨磨耗和疲劳损伤,结果表明:打磨后轮轨关系改善,轮轨作用力明显减小,曲线上股钢轨侧磨和上下股轨顶疲劳损伤发展得到了有效抑制。  相似文献   

4.
选取某线路2条磨损较为严重的500m半径曲线钢轨(曲线A及曲线B)作为研究对象,进行针对性打磨方案设计,并采用多体动力学软件UM建立车辆-轨道多体系统动力学模型,研究分析钢轨打磨对小半径曲线车辆动力学特性影响。结果表明:打磨后钢轨廓形得到改善,轨面波磨及掉块得到较好整治,曲线A及曲线B钢轨质量指数TQI均有显著下降,最大值分别下降32.40%、23.49%;打磨后曲线A及曲线B等效锥度显著降低,当横移量为0~10mm内,等效锥度均在0.15以下;曲线A及曲线B左右股与车轮接触区域相对打磨前更加均匀,3点接触得到较好处理;打磨后1~8位车轮与曲线A及曲线B钢轨廓形接触时接触斑内纵/横向蠕滑率最大值、磨耗功最大值、轮重减载率最大值均有显著降低,轮轨接触关系、轮轨磨耗及车辆运行安全性得到较好的改善;同时,车辆通过曲线A及曲线B时车体垂向/横向加速度频率及幅值降低,横向/垂向加速度最大值分别减小46.74%/80.04%、46.33%/78.96%,车辆运行稳定性得到提升。  相似文献   

5.
在对我国某地铁A型车、轨道结构、行车速度以及钢轨波磨状态等进行现场调查的基础上,根据车辆-轨道耦合系统动力学理论,建立车辆-轨道垂向耦合动力学数值分析模型,计算分析波磨波长、波深和行车速度对轮轨相互作用及车辆运行稳定性的影响,并且以轮重减载率限值标准为判定依据,计算分析了不同波长情况下波磨波深的建议控制值。研究结果表明:轮轨作用力随波磨波深和行车速度的增加而呈线性增长,随波磨波长的增加而减小;钢轨波磨和行车速度对车体振动响应的影响可以忽略,而波磨和行车速度对轮对振动响应影响十分明显,整体表现为波磨深度和行车速度越大轮对振动加速度越大,波磨波长越长轮对振动加速度越小;以0.65的轮重减载率限值标准为判定依据,分析20~60mm波长范围内波深控制指标,建议波长为20、30、40、50、60mm短波钢轨波磨波深分别达到0.05、0.04、0.06、0.06、0.09mm时进行打磨处理。  相似文献   

6.
随着机车轴重的不断增加,轮轨磨耗加剧,重载铁路小半径曲线上的钢轨波磨越发普遍。文章基于车辆系统动力学理论,建立C_0-C_0型30 t轴重重载机车模型,利用MATLAB软件模拟小半径曲线上的钢轨波磨作为外部激扰输入,研究了小半径曲线钢轨波磨对机车曲线通过安全性的影响。结果表明,轮轨垂向力随着波磨波深的增大而增大,随着波长的增大而减小,当机车以不低于70 km/h的速度通过小半径曲线钢轨波磨区间时,极有可能出现轮轨瞬时脱离现象。为了保障机车曲线安全通过,以动态轮重减载率、脱轨系数和倾覆系数为评价指标,针对小半径曲线上不同波深和波长的钢轨波磨,给出了行车速度建议:对于波长为300 mm、波深为0.8 mm的钢轨波磨区间,机车安全通过速度不能超过70 km/h;当波磨进一步发展,波深达到1.0 mm时,机车安全通过速度不能超过60 km/h。  相似文献   

7.
为研究轨道磨损演变及对车辆动力学性能的影响,基于SIMPACK多体动力学软件建立车辆-轨道系统动力学模型,利用FASTSIM算法和Lewis磨损模型,计算通过总重10~50Mt对钢轨造成的磨损,并比较和分析钢轨磨损对车辆动态性能的影响,分析结果表明:车辆通过小半径曲线时60 N轨上股侧磨量较大,但随通过总重的增加,60轨的侧磨速率增长较快;60N轨下股轨具有较大的顶垂磨量和较快的垂磨速率,整体垂磨速率随通过总重的增大而降低;钢轨磨耗对轮重减载率和轮轨垂向力影响很小,但对60轨的脱轨系数和轮轨横向力影响较大;钢轨侧磨导致轮对横移量增大,并对60轨的轮轨冲角产生较大的影响。  相似文献   

8.
选取半径300 m小半径曲线作为试验曲线,从轮轨接触几何特性、车辆动力学特性、现场打磨效果3个方面分析了周期性钢轨廓形打磨对小半径曲线寿命的影响。结果表明:周期性廓形打磨后轮轨间等效锥度显著改善;列车1~4位车轮与9#钢轨接触时磨耗功、最大脱轨系数均较为理想;周期性廓形打磨后钢轨轨面未出现比较严重的病害,侧磨速率显著降低,轨道质量指数有明显改善,有助于延长钢轨使用寿命。  相似文献   

9.
针对钢轨波磨对高速列车构架稳定性及轮轨接触力的影响问题,通过构建多体动力学仿真模型,以实测钢轨波磨为轨道激励,研究某型高速动车组以不同速度级通过波磨区段时车辆稳定性及轮轨接触动力特性和不同波深、波长、波深时变率对车辆系统振动响应的规律.研究结果表明:钢轨波磨磨深越大、车速越高、波深时变率越大则车辆构架稳定性越低,轮轨接...  相似文献   

10.
钢轨磨耗和滚动接触疲劳等病害会缩短钢轨使用寿命,增加铁路养护成本,甚至会威胁行车安全。为探究钢轨型面优化对车辆动力学性能的影响,建立机车、客车、货车3种车辆动力学模型,对国内某段小半径曲线钢轨型面进行优化设计,基于最小距离搜索法程序比较其轮轨接触关系,运用Simpack软件分析车辆动力学性能的变化。计算结果表明,钢轨型面进行优化后曲线上股接触范围由47 mm减小至28 mm,同时在轨距角处的接触概率明显减少,从而使钢轨侧磨明显减轻,钢轨型面优化后曲线下股轮轨接触点都集中在轨顶,避免钢轨出现满光带现象;钢轨型面优化后,外轨横向力降低3.3%~21.1%,轮轴横向力降低6.9%~21.9%,但轮轨垂向力的变化不明显;钢轨型面优化能减小机车车辆轮重减载率、脱轨系数和磨耗功率,有利于提高列车运行安全性。  相似文献   

11.
针对某地铁曲线路段钢轨波磨频发的问题,现场测量了20处钢轨的波磨,并以该实测的波磨作为激励,利用车辆—轨道耦合动力学模型,研究波磨对轮轨系统动力特性的影响规律。结果表明:该地铁波磨的纵向长度为1.5~3.0m,最大波深为0.2~0.4mm,波长范围在140~200mm,接近或者达到钢轨打磨限值,但是轮轨系统响应并未超限;波磨波深与轮轨垂向力、轮对垂向加速度和钢轨垂向加速度都没有明显的对应关系;波深时变率与钢轨垂向加速度没有明显的对应关系,但与轮轨垂向力和轮对垂向加速度都有较明显的线性对应关系,波磨波深变化快的位置,即波深时变率的峰谷值附近,都对应着轮轨垂向力和轮对垂向加速度的极值。由于波深时变率与轮轨垂向力和轮对垂向加速度之间有明显、一致的线性对应关系,基于波磨波深时变率的钢轨打磨标准比基于波深的打磨标准更加直观和合理。  相似文献   

12.
为了研究钢轨廓形打磨对小半径曲线轮轨关系和作用力的影响,对成渝铁路钢轨打磨前后的轮轨接触关系开展分析,对车辆轮轨作用力进行现场测试。测试结果表明:钢轨廓形打磨后,货运列车和客运列车通过小半径曲线时的轮轨垂向力均值降低幅度分别达到13.8%和8.4%,轮轨横向力均值降低幅度分别达到19.7%和33.5%,脱轨系数均值降低幅度最大分别达到16.0%和7.4%,轮重减载率均值降低幅度最大分别达到23.1%和27.3%;钢轨打磨后的轨面状态得到有效改善,轮轨接触分布更为合理。钢轨廓形打磨可有效提升列车曲线通过性能,对于轮轨关系和钢轨受力状态的改善具有重要意义。  相似文献   

13.
定期打磨钢轨可降低钢轨粗糙度,进而有效降低轮轨滚动噪声和车内噪声。针对某区段钢轨波磨导致的异常车内噪声问题,对该区段的钢轨波磨及客室与司机室的车内噪声进行现场测试和分析。研究结果表明:钢轨打磨前的司机室和客室的噪声主频段为420~670 Hz,与地铁列车通过该区段波长为25 mm和40 mm波磨时的通过频率基本一致;钢轨打磨后,车内噪声明显降低,客室噪声幅值降低了11.4 dB(A),司机室噪声幅值降低了9.8 dB(A)。针对车内噪声控制提出钢轨打磨限值:当钢轨粗糙度在大部分频带范围内超过钢轨粗糙度限值3 dB或6 dB时,建议对该钢轨进行打磨。  相似文献   

14.
为解决丰沙线R300~600 m小半径曲线钢轨波磨和剥离掉块严重等问题,根据线路实际运行车辆车轮踏面、钢轨实际廓形和表面病害情况,充分考虑轮轨接触关系,设计得到适合丰沙线小半径曲线的钢轨最佳廓形,并按其实施了廓形打磨。通过跟踪观测结果可知:廓形打磨后疲劳伤损和波磨等病害得到有效控制,波磨曲线维修成本大幅降低,钢轨廓形保持良好,整体打磨效果显著。而未实施廓形打磨的曲线钢轨疲劳伤损和波磨等病害发展迅速。  相似文献   

15.
为了减缓高速铁路小半径曲线钢轨侧磨严重的问题,运用多体动力学理论建立车辆系统动力学模型,采用KikPiotrowski模型模拟轮轨接触。基于车辆-轨道耦合动力学模型、Archard材料磨损模型、Hertz垂向理论和Fastrip切向接触理论并利用MATLAB编制钢轨磨耗预测程序,从曲线半径、轮缘润滑及轮轨材料合理选取3种措施分析其对钢轨磨耗的影响,并分析曲线半径和轮缘润滑对钢轨滚动接触疲劳的影响。研究结果表明:1)曲线半径适当增大对减缓小半径曲线中外轨侧磨具有显著作用。2)采取轮缘润滑措施后,能够明显减缓高速铁路小半径曲线外轨侧磨现象。实际运营中,在外轨的轨距角附近或车轮轮缘侧适当涂油润滑,可以减缓钢轨侧磨现象。3)适当增大轮轨材料硬度对外轨侧磨有明显改善作用,但是较大的轮轨材料硬度会加剧钢轨疲劳损伤,实际运营中应考虑兼顾钢轨疲劳损伤来寻求合理轮轨材料硬度。4)增加曲线半径及考虑轮缘润滑后,可使轮轨间最大等效接触应力显著减小。研究可为高速铁路小半径曲线钢轨疲劳损伤及提高其使用寿命提供理论依据。  相似文献   

16.
地铁线路设计受城市环境的影响,小半径曲线在地铁线路中普遍应用,钢轨波磨为小半径曲线主要病害,严重影响行车品质。针对不同的曲线病害状态,结合地铁车辆车轮踏面实际廓形,设计不同的钢轨打磨廓形,且曲线上下股进行非对称性廓形设计和打磨,改善轮轨接触关系,是有效的波磨整治方案。以北京地铁4号线北京南—马家堡区间一条350 m的曲线波磨病害整治为例,简述按该方案进行廓形设计和施工的过程,后期进行连续观测,打磨整治效果显著,能有效改善轮轨接触关系,控制疲劳伤损,延长钢轨使用寿命。  相似文献   

17.
针对钢轨斜裂纹特点提出钢轨非对称打磨技术以减轻和控制斜裂纹的形成与发展速率。利用SIMPACK动力学软件建立"蓝箭"号动车动力学分析模型,研究钢轨非对称打磨对列车运行性能的影响。研究结果表明:钢轨非对称打磨基本不影响车辆动力学性能和蠕滑行为;钢轨非对称打磨改变了轮轨接触几何参数,使轮轨接触点远离原内侧轨肩位置;钢轨非对称打磨通过改变钢轨廓形导致接触斑面积增大,明显降低轮轨最大接触应力;钢轨非对称打磨通过改变轮轨接触点分布和降低接触应力可减缓钢轨斜裂纹的萌生与扩展。  相似文献   

18.
重载线路小半径曲线外股钢轨侧磨速率明显加快.采用仿真计算结合现场测试,分析我国重载铁路轨道几何参数(超高和轨底坡)对曲线钢轨磨耗速率的影响规律.采用多体动力学软件 NUCARS 建立我国重载货车—轨道模型,改变超高和轨底坡两项轨道几何参数,采用数值积分方法仿真计算车辆通过曲线的性能.分析结果表明,设置合理的曲线欠超高和非对称的轨底坡可改善车辆通过曲线时的轮轨接触状态,降低了轮对冲角、外轨横向力和磨耗指数,从而在一定程度上减小钢轨磨耗速率.现场试验段长期观测的数据表明,两种措施对改善小半径曲线钢轨侧磨起到积极的作用.  相似文献   

19.
对我国主型12号道岔进行动力学测试发现,空车通过道岔侧向时脱轨系数超过限值要求。为此实测钢轨型面,对其轮轨接触特征进行分析,发现磨耗后的道岔下股钢轨轨顶呈明显扁平状,轮轨接触点向车轮踏面外侧转移,使得轮径差减小;上股钢轨轨肩磨耗明显,形成两点接触,减小了导向力矩;双重因素作用下降低了道岔侧向通过性能。优化轮轨关系是改善道岔区动力学性能的有效途径,结合道岔区实际运营状态,提出一种适用于道岔区的钢轨打磨廓形,优化了道岔区轮轨接触参数。动力学计算结果表明:钢轨打磨廓形可有效改善轮轨相互作用特性,明显降低车辆通过道岔侧向时的动力学指标,提高道岔区安全运营裕量。  相似文献   

20.
介绍广州地铁采用的2种钢轨打磨方法,重点论述“预防性打磨”方法的原理、应用和优缺点,指出预防性打磨能有效地控制钢轨侧磨、疲劳和波磨,改善轮轨接触状况,降低轮轨噪声,延长钢轨使用寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号