首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
Q500qE高强钢目前已经在一些大跨度钢桥中被采用,然而我国钢桥设计规范中并未给出关于Q500qE高强钢压杆稳定的设计要求。我国现行TB 10002.2—2005《铁路桥梁钢结构设计规范》中受压杆件设计是按容许应力法,考虑长细比、钢材级别、截面类型、残余应力等因素的影响以稳定系数进行承载力折减。基于这些影响因素,对Q500q E高强钢的稳定进行了系统的数值研究,并与各国规范进行了对比。  相似文献   

2.
Q500qE高强钢目前已经在一些大跨度钢桥中被采用,然而我国钢桥设计规范中并未给出关于Q500qE高强钢压杆稳定的设计要求。我国现行TB 10002.2—2005《铁路桥梁钢结构设计规范》中受压杆件设计是按容许应力法,考虑长细比、钢材级别、截面类型、残余应力等因素的影响以稳定系数进行承载力折减。基于这些影响因素,对Q500q E高强钢的稳定进行了系统的数值研究,并与各国规范进行了对比。  相似文献   

3.
为满足世界上跨度最大的公铁两用斜拉桥——沪通长江大桥的建造要求,从母材基本性能、工厂制造性能和设计参数3个方面研究Q500qE钢的拉伸、低温韧性和防断性能,切割、焊接和热矫形加工性能,以及结构安全储备、疲劳抗力和压杆稳定折减系数。结果表明:Q500qE钢在具有高屈服强度的同时还具有良好的塑性;16和32mm厚的Q500qE钢板在11~-50℃的环境温度下具有良好的防断能力,44和60 mm厚的Q500qE钢板在低于-40℃时低温防断性能有所降低;Q500qE钢的焰切和焊接工艺性良好,对接焊缝、熔透角焊缝、坡口角焊缝和T形角焊缝的表观和内部质量均能达到质量要求;Q500qE钢的焊接矫形温度不应超过750℃,而且在屈强比不大于0.86时具有与普通钢材相当的安全储备;Q500qE钢结构的疲劳设计可采用现有规范中的疲劳抗力设计指标。基于各国相关规范的研究思路和有限元计算结果给出了Q500qE钢压杆稳定折减系数的推荐值。  相似文献   

4.
以某下承式铁路钢桁架简支梁桥的单榀Warren桁架为研究对象,对杆端缩尺钢桁架桥梁结构及其端部缩尺压杆进行有限元分析和用钢量优化,重点研究杆端缩尺参数对杆件内力、截面应力、结构刚度、结构弹性稳定、压杆极限承载力、最小用钢量等的影响.结果表明:杆件截面高度缩尺是最理想的杆端缩尺方案;随着缩尺幅度的增大,桁架结构的杆件轴力变化很小,但杆端次弯矩和剪力显著减小,且结构竖向刚度和弹性稳定性有所降低.通过适当提高缩尺段的钢材强度等级,端部缩尺压杆的极限承载力将不低于未缩尺压杆,并可在满足结构强度、刚度及稳定性要求的前提下,进一步通过杆件截面优化,得到比未缩尺设计更小的结构用钢量.  相似文献   

5.
对采用超低碳贝氏体钢工艺路线研制的4种新一代高性能桥梁用钢Q345qE (NH),Q420qE(NH),Q500qE (NH)和Q690qE (NH)的力学性能、耐腐蚀性能、屈强比控制和焊接性能进行测试和分析.结果表明:这4种高性能桥梁用钢的强度都达到了GB/T 714-2008《桥梁用结构钢》的相关要求,且具有良好的低温韧性和塑性;采用TMCP工艺生产的Q345qE (NH),Q420qE (NH)和Q500qE (NH)钢厚板的屈强比均低于0.85,具有理想的低屈强比;采用TMCP+回火工艺生产的Q690qE (NH)及Q500qE (NH)钢厚板的屈强比明显提高;Q345qE (NH),Q420qE (NH)和Q500qE (NH)钢的耐腐蚀指数分别为6.105,6.233和6.604,均大于6.0,可以裸露使用;32mm厚Q420qE (NH)钢厚板的韧脆转变温度在-120℃以下,远远低于国内环境温度,其屈强比对国内使用环境下高性能桥梁用钢的韧性没有影响;这4种高性能桥梁用钢具有非常良好的焊接性能,易于施焊,接头和热影响区性能完全满足设计要求.  相似文献   

6.
Q500qE高性能钢工型梁极限承载力研究   总被引:1,自引:0,他引:1  
为评估Q500qE高性能钢梁的塑性水平和安全储备,设计Q500qE高性能钢和Q345qD普通低合金钢全尺寸试验工型梁,通过模型试验和有限元分析方法进行极限承载力研究.结果表明:Q500qE高性能钢梁有较好的塑性,不会因为屈强比大而发生脆性破坏;Q500qE与Q345qD工型梁的荷载一位移曲线以及塑性发展过程类似,均没有出现明显的屈服平台;两者不同塑性发展阶段作用荷载与材料的名义屈服倚载的比值基本相等,说明Q500qE高性能钢梁有与Q345qD钢梁基本相同的安全储备.试验梁加载过程各关键作用荷载对应的挠度有限元计算结果与试验值基本一致,误差较小,表明本文有限元分析中选用的多线性随动强化模型模拟高性能钢的本构关系是合理的.  相似文献   

7.
山佳 《铁道知识》2012,(5):36-39
创新之二:Q420q新一代的桥梁结构钢 大胜关长江大桥上部结构总荷载近100吨/米,致使最大杆件轴力高达10000吨,而且采用悬臂施工的钢桁拱结构内力变化大,各部位的受力也不均匀.由于铁路大跨度钢桥通常受材料及其使用条件等因素的限制,最大构件设计承载轴力在5500吨量级(芜湖长江大桥),对于设计轴力最大的钢桁拱拱肋而言,即使截面宽度增加到1400毫米、截面高度增加到1820毫米且采用箱型多肋截面来增加其承压面积,仍然有约15%的构件需要采用较Q370qE更高强度等级的钢材. 这就需要研制生产一种新的高强桥梁结构钢材.  相似文献   

8.
在进行稳定设计时,大部分规范同时考虑构件的整体稳定和板件的局部稳定,不同规范的稳定设计方法差异较大。介绍美国、日本、欧洲、中国四种钢结构桥梁规范中的稳定设计方法,通过将整体稳定折减系数和局部稳定折减系数分别表示为相对长细比和相对宽厚比的函数,绘制4种规范下的稳定折减系数曲线进行对比。同时,针对桥梁工程中常用的翼缘厚度小于40 mm的H形截面杆件,根据各规范中对应的曲线,结合算例计算其稳定折减系数。结果表明:对H形截面受压杆件,整体稳定折减系数为美国规范最大,日本和欧洲规范其次,中国规范最小;局部稳定折减系数为美国和欧洲规范较大,日本和中国规范较小。中国规范在稳定设计方面最为保守。  相似文献   

9.
城市轨道交通车辆的车体结构根据强度需求局部采用高强钢材质。为保证高强钢材质的焊接质量,以某出口车辆所采用的Q690D高强钢为例,阐述了该高强钢焊接用焊丝的选择与确定方式,以及焊接工艺评定试验的内容和要求。  相似文献   

10.
钢桁梁腹杆插入式节点杆端应力分析与探讨   总被引:1,自引:0,他引:1  
研究目的:为便于制造与安装,大跨钢桁连续梁桥往往在采用整体节点,腹杆与主桁节点连接时,腹杆插入节点板中,采用高强螺栓两面连接。由于仅连接杆件的两个面,另外一面(或两面)不直接承受节点板传递的荷载,必然存在剪力滞效应。通过建立钢桁梁腹杆的几种典型截面的有限元模型,研究两面连接腹杆端部的应力分布,从而掌握腹杆端头板件应力分布的规律并用于指导钢桁梁桥节点设计。研究结论:杆件端部最大正应力均发生在螺栓群末端;一般来说,杆件板厚越大,螺栓连接沿杆件长度方向的排数越多,最大正应力与名义正应力的比值越小;截面形式变化、板件厚度变化不会对最大剪应力的发生部位产生影响;杆件中部,截面应力趋于均匀,剪力滞效应不显著。  相似文献   

11.
随着单层钢结构厂房在铁路生产房屋中的广泛应用,多数钢结构厂房柱应力水平低的现象越来越突出,造成单层钢结构厂房结构设计的经济性较差。其原因是现行《钢结构设计规范》(GB50017—2005)中受压钢构件板件的宽厚比限值与其应力水平无关,按此设计的厂房柱截面多偏大而过于保守。对轴心受压钢构件板件宽厚比限值的推导过程加以重新审视,引入应力相关折减系数,按照修正的等稳定性原则,统一分析轴心受压构件的板件宽厚比限值,并通过数据拟合,提出更加合理实用的限值公式。新的限值公式与板件的应力水平相关,与理论计算结果吻合较好。  相似文献   

12.
桥梁用高强钢的低温断裂问题一直是桥梁钢结构设计研究中的热点问题。为了深化对高强度桥梁钢断裂问题的认识,从高强钢的断裂韧性及其评估方法、现行高强钢断裂韧性研究存在的主要问题等方面,系统总结并讨论了高强桥梁钢防断评价研究的现状和发展趋势。高强钢断裂韧性是由多个复杂因素共同决定的弹塑性断裂力学问题,其破坏形式、服役工作温度、使用板厚、材料材质组织均匀性等问题较为复杂。高强钢的断裂韧性试验、防断评价方法及其适用性是钢结构构件防断设计理论的重要基础和防断问题持续深化研究需要迫切解决的问题。  相似文献   

13.
基于薄板的弹塑性大挠度有限元理论和弧长法,综合考虑了各种缺陷的影响,分别研究了梁的长细比、翼缘宽厚比和截面边长比对梁的稳定性的影响。最后在考虑了高强钢薄壁箱形截面梁的局部和整体的相关屈曲的基础上,提出了以翼缘宽厚比和截面边长比为参数的高强钢薄壁箱形截面梁的极限承载能力计算公式,并证实了公式的有效性。为有关高强度薄壁箱形截面梁的稳定性设计提供参考。  相似文献   

14.
钢-混预应力桁梁新结构探索与研究   总被引:1,自引:0,他引:1  
铁路钢桁梁设计受到强度、稳定、疲劳、构造及冶金技术等多方面因素的制约,而桁高与跨度存在合理比例关系,所以跨度大到一定程度时建造就有困难、有风险,为克服强度、稳定等问题而变得经济上不合理。提出的钢混预应力桁梁是将上弦杆做成钢管混凝土结构、下弦杆做成钢与预应力混凝土组合结构,以增大其压杆稳定,减小杆件的应力幅,削减下弦杆的最小长细比限制,增强横向刚度,使桁梁这一古老结构形式的适应能力更强。  相似文献   

15.
变截面压杆稳定计算的传递矩阵法   总被引:1,自引:0,他引:1  
本文从压杆的微分方程出发,推得了楔形及锥形压杆的传递矩阵,用传递矩阵法对复杂的变截面压杆进行了一系列的稳定计算。计算结果表明,本文的公式正确。该方法具有精确度高,力学概念清晰及简便易行的优点,适于工程技术人员在微机上的应用。  相似文献   

16.
熊学炜 《铁路航测》2014,(3):104-106
从柱截面形式、柱构造分析等方面对双层吊车钢结构厂房柱子系统进行全面研究。此类钢结构厂房适合采用格构柱、实腹钢梁和钢桁架屋盖排架结构。重点利用ansys有限元进行肩梁节点分析,柱肩梁采用适当的加劲肋可以较好传递大吨位吊车荷载,有效实现强节点、弱杆件设计原则。  相似文献   

17.
沪通长江大桥结构复杂,其中钢结构桥梁长5 826 m,钢梁用钢量达25万t,钢梁杆件采用栓接和焊接相结合的方式连接,高强螺栓使用数量多,质量控制难度大。参建单位采用标准化管理方式,从高强螺栓母材检测、施拧工艺、过程控制、终拧检测等方面构建了完整的质量控制体系,保证了高强螺栓的施工质量。  相似文献   

18.
跨层平面桁架结构体系在大跨度钢结构中得到广泛应用,其稳定问题是结构设计的关键。以大庆西站房跨层平面桁架结构为背景,采用缩尺试验和数值分析相结合的方法,系统分析该跨层平面桁架结构的整体稳定性能。研究结果表明:该跨层平面桁架结构失稳形式主要为面外弯曲失稳,面外变形较小;桁架节点处由于杆件交汇数量多,局部应力复杂,发生明显的强度破坏,建议实际工程中应对受力较大的节点进行加强处理。  相似文献   

19.
为了研究大跨度组合梁斜拉桥施工过程中跨越铁路时的安全性,对该桥13#梁段的施工相关技术进行了研究。对主梁单元的安装方式采用切线法,着重研究了大桥的整体稳定性,大桥构件的安全性以及钢主梁连接处高强螺栓安全性。跨越铁路施工计算结果表明:第二类稳定安全系数最小值为2.86,满足稳定性要求;主塔最大压应力为8.0 MPa,钢主梁最大压应力为120.6 MPa,最大拉应力为38.6MPa,均满足规范要求;高强螺栓的最大剪力为163.1 kN,小于强度设计值。分析结果表明该桥跨越铁路时的施工过程是安全的。  相似文献   

20.
高桩承台整体式钢吊箱围堰设计与大体积混凝土施工技术   总被引:1,自引:0,他引:1  
国道主干线广州绕城公路西环南段北江特大桥主墩设计为整体式高桩承台,采用钢吊箱围堰施工。介绍173 t整体式钢吊箱围堰设计方案及在深水高桩承台施工中的应用,钢吊箱围堰采用加工场分杆件加工,现场拼装的方式,吊箱吊杆采用拉压杆,设计受力明确,制造简单,下放定位准确,施工速度快,安全可靠;阐述承台大体积混凝土施工工艺及温控措施,效果显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号