首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于车辆-轨道耦合动力学理论,结合我国高速铁路轨道不平顺的管理模式,提出利用高速铁路轨道不平顺谱进行不同管理等级轨道不平顺限值估算的方法。以中国高速铁路无砟轨道不平顺谱激扰作用下中国典型高速车辆在板式无砟轨道上运行为例,进行350km/h行车速度条件下轨道高低、轨向、水平、轨距不平顺各管理等级(Ⅰ~Ⅳ级)对应限值的估算,并与传统单一谐波(波长为10、40m)激扰作用下计算获得的限值和国内外高速铁路轨道不平顺标准对比分析。结果表明,采用本文所提的限值估算方法,以包含多种波长成分的随机不平顺作为输入激扰,相比单一谐波的计算方式考虑更为全面,可反映轨道不平顺各波长成分对行车品质的共同作用;相比国内外高速铁路轨道不平顺标准,在本文仿真计算条件下,利用高速铁路轨道不平顺谱估算的各管理等级轨道不平顺限值总体居于国内外标准之间。因此,本文利用高速铁路轨道不平顺谱进行轨道不平顺限值估算的方法是可行的,为采用动力学仿真手段获取轨道不平顺理论限值提供了一种新途径。  相似文献   

2.
基于刚柔结合建模技术的道岔区轮轨动力学仿真分析   总被引:1,自引:1,他引:0  
采用刚柔结合建模技术,将轨道视作柔性体,车辆视作刚性体,结合有限元软件和多体动力学软件联合仿真,研究在动荷载作用下,轨道几何及刚度不平顺对道岔区轮轨动力特性的影响。结果表明,道岔区刚柔结合体模型基本反映了道岔轨道在车辆经过时产生的振动规律以及轨下不平顺对轮轨系统振动特性的影响;由计算得到的轨道动刚度分布规律也可为道岔区轨下刚度平顺化设计提供参考。  相似文献   

3.
本文应用刚柔多体混合建模理论,建立道岔区车辆和钢轨动态空间仿真模型,在模型中考虑了道岔区尖轨和心轨部位轨道的几何不平顺,考虑了由于道岔区钢轨断面分布不均匀、道岔结构特征产生的结构不均匀以及轨枕长度的变化、轨下基础弹性分布等参数变化引起的轨道竖向刚度不均匀,研究了这种轨道竖向刚度不均匀和几何不平顺对列车不同速度下的轨道结构系统动态刚度的影响,以及在不同的速度下对列车通过道岔时车辆的振动响应、轮轨作用力和道岔区轨道结构各部分振动的影响,并分析竖向刚度不均匀对列车运行通过道岔区平稳性变化的影响规律,为研究道岔区轨道结构刚度优化提供理论依据.  相似文献   

4.
基于动力学理论并利用多体动力学仿真软件UM建立30 t轴重重载车辆-轨道空间耦合模型,分析高低/轨向复合不平顺波长、幅值对重载车辆动力性能的影响,确定最不利波长并提出高低/轨向复合不平顺幅值管理建议值。研究结果表明:(1)高低/轨向复合不平顺的最不利波长为10 m,波长大于40 m后,波长对动力性能影响较小;(2)高低/轨向复合不平顺中的高低不平顺成分幅值变化对轮重减载率、车体垂向加速度等指标影响显著,而轨向不平顺成分幅值变化对脱轨系数、轮重减载率、轮轨横向力、车体横向加速度等指标影响较大;(3)仅开行重载货车的线路,高低/轨向复合不平顺偏差限值I~Ⅳ级管理标准建议分别取为4 mm/5 mm、7 mm/8 mm、10 mm/10 mm、14 mm/13 mm。  相似文献   

5.
随着高速铁路不断发展,400 km/h及以上高速铁路已成为铁路科技创新的重大需求,在更高速度运行条件下将面临着一系列车线动力学问题。为探讨更高速度条件下高速铁路线路长波不平顺敏感波长及线路平顺性管理控制问题,基于车线动力学理论,针对某一高速铁路车型,分别就高低不平顺对车体垂向加速度的影响、轨向不平顺对车体横向加速度的影响进行相干性分析与功率谱密度分析,得到了300~400 km/h速度条件下车体长波不平顺敏感波长;通过轨道静态中点弦实现了对特定速度条件下敏感波长的有效控制并提出对应的中点弦控制标准。综合对比发现:此高速动车组列车在300~400 km/h速度条件下,高低不平顺敏感波长范围为114~147 m,轨向不平顺敏感波长范围为60~79 m;线路长波不平顺对轮轨作用力影响较小,对车体振动加速度影响显著,可以通过静态中点弦测量管理有效控制轨道不平顺敏感波长;在400 km/h速度条件下,高低不平顺推荐采用80 m中点弦进行控制,Ⅰ,Ⅱ和Ⅲ级矢高管理建议值分别为5,11和17 mm;轨向不平顺推荐采用60 m中点弦进行控制,Ⅰ,Ⅱ和Ⅲ级矢高管理建议值分别为4,6和10 mm;在实际线...  相似文献   

6.
高速道岔的轨道几何不平顺状态能够直观反映其服役性能,开展高速道岔区段轨道几何不平顺状态管理是道岔检养修体系中的重要一环。以高速综合检测列车2023年1月—5月采集得到的检测数据为研究对象,从道岔结构、管理速度、道岔型号、辙叉号角度进行分类,分析当前高速正线道岔铺设概况。以道岔区轨道质量指数为基础,提出能够量化一定检测周期内道岔区段轨道几何整体状态与变化情况的道岔轨道状态指标与波动率指标。最后,以铺设最广的1/18道岔为研究对象,分析主型1/18道岔的轨道几何不平顺状态规律。研究结果为后续应用TQI-T评价高速正线道岔动态轨道几何不平顺状态以及指导道岔区段养护维修等工作奠定基础。  相似文献   

7.
总结分析日本、法国、德国、欧洲标准委员会(CEN)以及中国高速铁路轨道不平顺管理标准,根据各国管理方式、检测方法的不同,提出一种将不同波长范围轨道不平顺管理标准转换至相近测量弦长管理值的方法,并将中国高速铁路250(不含)~350km/h速度等级的轨道高低、方向、水平、轨距和扭曲不平顺管理值与日本、法国、德国及CEN高速铁路相近速度等级、相同管理等级下的管理标准进行对比。结果表明,中国高速铁路轨道不平顺管理标准与日本新干线轨道不平顺管理标准较为接近,但明显严于法国、德国及CEN相应等级的管理标准,尤其是限速管理标准。我国高速铁路轨道不平顺管理标准的严格程度已达到甚至超过世界高速铁路发达国家,个别等级和类型的轨道不平顺管理值的经济合理性尚需进一步论证。  相似文献   

8.
为研究无砟轨道轨向和高低不平顺对车辆-轨道耦合系统的动态影响,确定各不平顺值下的限速标准,分别建立CRH2A型车和CRH5型车计算模型。通过3σ原理将不平顺样本的10 m弦测值拟合为正态分布,取其μ±3σ的值为该样本不平顺值。计算不同速度等级、不同程度高低和轨向不平顺值时,两种车型的动力响应。研究结果表明:多数工况下CRH5型车所确定的不平顺限值小于CRH2A型车,说明CRH2A型车动力学性能更优;轨向不平顺主要引起车辆横向扰动,高低不平顺主要引起车辆垂向扰动,说明某方向上的不平顺激励主要对同方向造成扰动;列车对于横向的激励较垂向激励更为敏感,因此轨向不平顺限值通常要小于高低不平顺限值;计算得到各动态不平顺值对应的限制速度,利用轨道动静态几何不平顺之间的关系转化得到各速度等级下轨道静态几何尺寸容许偏差管理值,对规范内容有一定的补充。  相似文献   

9.
介绍试验速度350 km/h预设轨道不平顺区域实车试验工况,以及现场预设轨道不平顺区域的原则。实设轨道不平顺区域包括不同幅值、波长的高低、轨向、轨距、水平、三角坑、水平和轨向逆向复合、三波连续高低、三波连续轨向、交替轨向等。阐述轨道几何、地面动力性能、车辆动力学的测试内容和方法,对轨道几何、地面动力性能、车辆动力学随速度变化进行分析,得出轮轨动力性能和车辆动力响应与轨道不平顺、速度的关系,建议加强对水平轨向逆向复合不平顺的管理,加强对连续多波高低和轨向不平顺控制。  相似文献   

10.
大跨度铁路桥梁在复杂环境下的大变形特点使得矢距差法不再适用于桥上轨道线形验收工作。为了解决400 km/h大跨度铁路桥梁轨道长波不平顺验收难题,首先根据成渝中线2座大跨度铁路桥梁特征,分析裕溪河特大桥与赣江特大桥对车体加速度的影响特征及综合检测列车的敏感波长,结合现有标准给出基于中点弦测法的桥上轨道静态验收策略。然后依据车辆—轨道耦合动力学理论,构建车辆多刚体模型和CRTSⅢ板式无砟轨道有限元模型,系统开展构造余弦波不平顺和实测不平顺作为轮轨激励条件下的动力仿真计算,并考虑桥上纵断面的影响,基于车体振动加速度和舒适性指标给出了400 km/h高速铁路大跨度桥梁轨道静态长波不平顺验收标准。最后通过裕溪河特大桥轨道静动态不平顺和中国高速铁路无砟轨道谱进行了验证。研究结果表明:1) CR450AF列车在400 km/h下车体沉浮运动的敏感波长为163 m,建议400 km/h高速铁路大跨度桥梁轨道静态长波不平顺采用60 m中点弦测法进行评价;2)桥上轨道静态高低长波不平顺60 m中点弦测验收值不应大于6 mm,轨向长波不平顺60 m中点弦测验收值不应大于4 mm;3)大跨度桥上轨道静态长波轨...  相似文献   

11.
为研究车辆高速运行条件下钢轨焊接接头不平顺引起的轮轨动态响应规律,利用ABAQUS软件建立轮轨有限元接触模型,引入不同形状的焊接接头不平顺作为轨道子模型边界条件,并利用一高速铁路焊接接头不平顺及轮轨垂向力实测数据验证了模型的可靠性;利用模型仿真计算不同车辆运行速度和焊接接头不平顺幅值条件下的轮轨垂向力,并分析轮轨垂向力等势线分布特征。研究结果表明:轮轨垂向力受焊接接头不平顺幅值的影响程度随车辆运行速度的增加而增大;为使钢轨焊接接头不平顺引起的轮轨垂向力不大于170 kN,不同速度等级的线路应该限定相应的焊接接头不平顺幅值管理值;对于300~350 km/h速度等级的线路,凸型焊接接头不平顺幅值不应超过0.27 mm,凹型焊接接头短波不平顺幅值不应超过0.30 mm.  相似文献   

12.
增加道岔尖轨轨下弹性对轮—岔动力性能的影响   总被引:1,自引:0,他引:1  
通过建立道岔垂向几何及刚度不平顺激扰模型,运用车辆—轨道耦合动力学理论,模拟计算了提速列车对提速道岔的动力影响。比较了提速道岔尖轨轨下增加弹性后提速列车对道岔的动力作用,并进行了现场测试。结果表明提速道岔尖轨轨下增加弹性后能减轻基本轨至尖轨区过渡段轮—岔垂向相互作用,有效地改善道岔的动力性能,延长滑床板及道岔的使用寿命  相似文献   

13.
针对我国高速铁路无砟轨道线路架空的需求,采用有限元法和车-桥动力耦合分析方法对适用于通行速度80 km·h-1的梁式临时架空装置进行设计和研究,并就该装置提出临时架空线路轨道静态几何不平顺容许偏差管理值.结果表明:梁式临时架空装置水平、高低和轨向变形设计指标限值分别为5.0,6.0和5.5 mm;所设计的架空装置具有较...  相似文献   

14.
《中国铁路》2006,(10):76-76
日本JR东海公司为了提高双开道岔的通过速度,使用压接形益线尖轨和将导益线半径增大的线性改进道岔,将道岔通过速度提高到110km/h。但是近年来列车通过道岔时的线性不平顺明显增大,有必要采取彻底的左右振动对策。使用轨道检测车检测线性不平顺、水平不平顺、尖轨的方位、高低不平顺,发现原因在于道岔头部中心区高度不均、尖轨部位低度不匀。作为防止车辆左右振动的对策,要注重线性方向的不平顺治理,具体措施是右轨向左移动13mm,左右钢轨的残留偏差4mm,这样由于左右钢轨取得平衡,所以道岔后端部的最大移动量为13mm.  相似文献   

15.
高速列车车轮磨耗或加工误差引起不同车轮名义滚动圆半径偏差,在道岔区固有结构不平顺作用下,轮径差加剧轮轨系统动力性能。为揭示轮径差对高速道岔区车辆走行性能的影响,以某型高速动车组和客运专线12号道岔为主要研究对象,在综合考虑不同轮径差对岔区轮轨接触几何关系影响的基础上,建立了高速车辆-道岔耦合动力学模型,系统分析了高速车辆存在不同类型和幅值轮径差时通过道岔的稳定性、安全性和平稳性。结果表明,轮径差使轮载过渡位置提前;小轮径车轮位于尖轨侧时,轮对侧滚角增大,道岔固有横向结构不平顺变化剧烈。等值同相轮径差显著恶化车辆过岔走行性能,等值同相轮径差达2mm时,轮轨横向力和脱轨系数快速增大,车辆过岔易发生失稳,平稳性指标达到峰值。建议将同相分布同轴轮径差2 mm或反相分布同轴轮径差3mm作为运用限度,将同轴轮径差1.5mm作为一、二级检修限度。  相似文献   

16.
轨道不平顺谱是表征轨道不平顺幅频特性的有效工具。目前,高速铁路轨道不平顺谱的研究主要聚焦在波长2 m及以上成分,甚少涉及轨面短波不平顺谱。基于大量无砟轨道高速铁路实测数据,研究轨面短波不平顺谱的表达函数及其与中长波轨道不平顺谱衔接的适应性。结果表明:两段幂函数能够很好地表征轨面短波不平顺谱。采用对数坐标系下的5阶多项式拟合全波段高低不平顺谱,实现中长波和短波成分在波长1~2 m范围内的平缓过渡。实测数据表明高速行车条件下,短波高低不平顺对轮轨垂向力及轴箱、构架和车体垂向加速度等指标均存在显著影响,全波段高低不平顺谱的建立对轮轨振动仿真分析、车辆和轨道结构设计以及轨道状态评估具有重要意义。  相似文献   

17.
邓川 《铁道建筑》2014,(4):125-128
基于高速铁路轨道平顺性验收标准和方法,对与轨道平顺性有关的测量误差进行了理论分析和精度估算。理论分析指出CPⅢ点间的相对精度、全站仪自由设站误差及极坐标测量误差是影响轨道平顺性的主要因素。精度估算表明:采用标称精度不低于1″、1 mm+2×10-6×D(D为测距边长,km)的全站仪,能够完全满足中线偏差、高程偏差和300 m弦长的轨向、高低平顺性检测的精度要求;0.5″级全站仪能够满足30 m弦长的轨向、高低平顺性检测的精度要求,而1″级全站仪无法达到相应的核算精度,建议限制观测距离或重复观测以提高数据的可靠性。  相似文献   

18.
高速道岔因其自身固有的结构不平顺,在轮载过渡时存在剧烈的轮轨动力冲击作用。随着高速列车运行速度的提升,动态轮轨冲击效应进一步加剧。目前,最高时速350 km的高速道岔结构体系已形成,随着时速400 km以上高速铁路的建设,亟需开展既有高速道岔的适应性研究。在评估18号道岔对时速400 km高速列车的适应性基础上,从轮轨关系、无缝化设计等方面,对时速400 km高速道岔的结构设计关键技术进行探讨,提出在设计时速400 km高速道岔时,可通过合理设置心轨降低值、抬高翼轨、优化基本轨廓形等技术,改善轮轨相互作用;通过转辙器跟端限位器优化、采用新型钩型锁闭机构,进一步实现高速道岔无缝化,满足跨区间无缝线路要求,优化了行车条件,保障了线路平顺性,可为相关高速道岔设计提供参考。  相似文献   

19.
现有高速铁路轨道长波不平顺静态检测主要采用矢距差法或简化矢距差法,存在与检测起点相关、含有里程相位差、基础变形时检测幅值偏大、与车体振动加速度匹配性较差等缺点。利用中点弦测法对轨道长波不平顺进行静态检测,通过对中点弦测法不同测弦长度有效测量波长范围和列车敏感波长分析,采用60 m测弦长度的中点弦测法最适合时速300~350 km运营期高速铁路;利用车辆-轨道动力学仿真分析和最小二乘法拟合相结合方法,提出运营期高速铁路300及350 km·h^-1速度下的轨道长波高低不平顺控制标准,并进行实例验证。结果表明:60 m弦中点弦测法既可保证轨道长波不平顺检测的准确性,又能很好地体现车体振动响应;时速300 km运营期高速铁路轨道长波高低不平顺3级控制标准建议值分别为9,15,21 mm;时速350 km分别为7,11,15 mm。  相似文献   

20.
本文基于车辆-轨道耦合动力学理论,建立了考虑柔性车体的高速列车-轨道耦合动力学模型,对比分析了轨道几何不平顺波长变化对典型高速动车组动力学性能的影响规律,探讨了400 km/h行车速度条件下高速铁路轨道几何不平顺的敏感波长.结果表明:(1)400 km/h高速铁路轨道几何不平顺敏感波长主要存在两个范围,短波范围的敏感波...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号