首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
大跨度混合梁斜拉索轨道专用桥由于跨度大、设计独特、变形复杂,铺设无砟轨道缺少线形精度控制的理论储备及实践经验。以高家花园轨道专用桥为例,对大跨度混合梁斜拉索轨道专用桥无砟轨道铺设精度控制进行研究,包括轨道结构荷载预压、堆载方式、线形监控量测、线形拟合。通过轨道线形拟合及线形分析,预测施工轨道后的轨道线形,最终实现铺轨基标锁定,保证轨道施工精度的控制。  相似文献   

2.
结合武广高速铁路陆水特大桥工程实践,分析无砟轨道大跨度连续梁桥施工控制的影响因素、主要内容和控制方法;应用结构分析软件ANSYS对陆水特大桥桥梁结构进行分析计算,采用标高控制、应力监测、主梁温度监测等措施进行施工控制。实践证明,连续梁桥结构变形、标高和应力水平正常,梁体高程误差控制在规定范围内,成桥线形与控制目标吻合良好,达到预期效果。  相似文献   

3.
铁路桥梁铺设无砟轨道,结构变形和成桥线形直接影响轨道的平顺性、列车运营安全性和舒适性,尤其大跨度桥梁结构刚度小、施工控制难度大,需深入研究。采用有限元法建立全桥模型,分析不同作用和工况下的结构变形、索对结构竖向刚度贡献、索对温度变形的抑制作用、梁体残余变形;采用车-桥耦合动力分析模型,计入索梁温差影响进行行车动力仿真分析;联合施工方开展铁路PC部分斜拉桥无砟轨道分阶段单元化、动态化线形控制施工技术研究。结果表明:桥梁竖向刚度良好,温度作用对结构变形影响显著,经梁体残余变形对比分析提出推荐施工方案,斜拉索对结构变形抑制明显;索-梁温差对车辆运行性能影响较小;按研究的施工方法,无砟轨道施工完后梁体线形与设计线形基本吻合,满足无砟轨道铺设要求。  相似文献   

4.
大跨度铁路桥梁成桥线形与设计线形易产生偏差,通常需根据成桥线形变更线路纵断面;同时,大跨度铁路桥梁受荷载作用呈现明显的动态大变形特征,导致桥梁服役期间线路纵断面仍难以与设计纵断面匹配,影响其后续的线路养护维修。结合某大跨度公铁两用桥梁,介绍现有考虑成桥施工偏差的线路纵断面设计方法,并考虑温度、列车载重等常规荷载激励,开展基于中点弦测法的轨道几何形位评估和基于动力仿真的列车舒适性评价,以分析服役期间不同线路设计纵断面对桥梁线形变化的适应性。结果表明:降温导致跨中等效竖曲线半径减小,拟合调整大跨度桥梁线路纵断面时,应重点关注降温荷载对车辆运行平稳性的影响;桥梁结构整体受力变形所引起的车体垂向振动加速度变化不超过0.05 m/s2,线形平顺性主要由线路设计纵断面本身控制;相比多坡段纵断面,多项式拟合设计的线路纵断面消除了变坡点和竖曲线,从而减小线路纵断面引起的列车车体振动响应。  相似文献   

5.
无砟轨道铺设于桥上时,轨道的高低平顺取决于桥梁的最终线形。为研究轨道铺设过程中预拱度的设置对大跨度连续刚构梁桥的成桥线形和轨道高低不平顺的影响,根据某连续刚构桥上铺设无砟轨道的工程实际参数,采用经验公式为桥梁设置预拱度,利用有限元法建立完整的桥梁结构模型,分析不同预拱工况下铺设无砟轨道的桥梁成桥线形及轨道高低不平顺变化规律。结果表明:预拱度的设置和轨道二期恒载会造成桥上轨道的高低不平顺,且长波不平顺影响最为显著,设计时需对桥梁线形形成的轨道长波高低不平顺进行检算,设置合理的预拱度以满足规定的限值要求。  相似文献   

6.
CRTSⅢ型板式无砟轨道施工精度要求高,铺设在柔性的大跨度斜拉桥上精度难以控制。为研究斜拉桥无砟轨道施工精度控制方法,以新建南昌至赣州高速铁路赣州赣江特大桥为工程背景,通过有限元模拟分析,研究大跨度斜拉桥无砟轨道施工时,CPⅢ网联测的环境控制要求,以及大跨度斜拉桥无砟轨道施工的线形控制方法。结果表明,选择气温稳定、无温度梯度影响且风力不超过3级的夜间环境进行CPⅢ网联测,可有效保证大跨度柔性斜拉桥CPⅢ控制网联测的精度;无砟轨道施工阶段,合理调整索力,并根据大桥实测变形值不断修正预拱度计算模型,用于指导无砟轨道精调施工,可保证大跨度斜拉桥CRTSⅢ型板式无砟轨道的施工质量与精度要求。  相似文献   

7.
徐优 《铁道建筑技术》2007,(1):28-30,44
悬索桥在施工阶段的结构刚度比成桥时要低很多,使得颤振稳定性成为控制桥梁设计与施工非常重要的因素。运用大跨度桥梁多模态颤振分析方法,对某大跨度悬索桥进行了各施工阶段的颤振分析,并探讨了施工阶段参数不同设置时悬索桥颤振临界风速的变化规律,据此以评价该桥施工阶段颤振稳定性。  相似文献   

8.
我国铁路桥梁首次在郑西铁路客运专线上采用V形墩连续刚构转体施工。施工过程中,线形控制较为复杂。针对线形影响关键因素,制定了相应控制方案,按照方案实施后使梁体线形得到了有效控制,成桥后线形美观,主要参数特别是外形尺寸方面符合设计要求,满足了无砟轨道高精度的铺设要求。  相似文献   

9.
昌吉赣高铁赣州赣江特大桥是主桥主跨300 m的斜拉桥,桥上铺设带有隔离缓冲垫层的CRTSⅢ型板式无砟轨道,是我国首座在300 m级跨度斜拉桥上铺设无砟轨道的桥梁。为保证列车运行平稳,主跨设置圆弧形预拱度,跨中轨面预拱度为60 mm。大跨度斜拉桥受桥上载荷、温度及风速等因素影响会产生较大变形,导致桥上CPⅢ精测控制网变化。考虑到无砟轨道施工的高精度要求,提出赣江特大桥上无砟轨道施工线形控制关键技术,保证赣江特大桥无砟轨道达到设计要求线形,可为其他大跨度桥上无砟轨道施工提供参考。  相似文献   

10.
合龙顺序是多联大跨度预应力混凝土连续梁桥施工控制的关键因素,对梁桥成桥状态影响较大。本文以一座9跨预应力混凝土连续梁桥施工为背景,利用MIDAS/Civil建立空间有限元计算模型,通过模拟悬臂浇筑施工过程,对比不同合龙顺序对成桥线形、支座预偏量、截面最大应力的影响,从而得到最优合龙方案。  相似文献   

11.
研究目的:鹅公岩轨道大桥为主跨600 m的自锚式悬索桥,在世界上首次采用斜拉-悬索体系转换的方法进行桥梁建造。在建造过程中最重要的环节就是由斜拉桥向悬索桥的体系转换过程,其总体特点是施工环节多、干扰因素复杂、控制参量交叉影响、小变形大位移的非线性特征显著等。为大幅度降低体系转换过程中的吊索张拉难度,通过对斜拉桥成桥后的主梁线形进行调整的优化分析,降低体系转换过程中主缆和主梁的高差,既保证体系转换的安全度,又大幅度优化体系转换方案。依据现场实际施工方案的逐步分解,以及现场监控桥梁各项结构反应和有限元模拟相结合进行斜拉-悬索体系转换的系统研究,以指导施工的全过程。研究结论:(1)斜拉-悬索耦合体系结构受力十分复杂,需采用实际监控数据提取分析与数值仿真模拟研究相结合的方法来研究两个独立缆吊系统的体系转换过程的力学变化情况,才可精准安排后续施工工作;(2)给出了主梁线形调整过程的斜拉索引出量和调整后的实测索力,以及包含吊索张拉实测索力的体系转换全过程;(3)本研究成果可为大跨度无支架自锚式悬索桥成桥提供参考。  相似文献   

12.
以广珠城际轨道某大跨度连续梁桥为例,在确定仿真计算参数以及考虑诸多相关影响因素的基础上,着重考虑荷载因素进行仿真计算,得到各控制截面的控制点预拱度值,从而确定桥梁结构施工过程中每个阶段的理想变形状态;以此为依据来控制施工过程中每个阶段的结构行为,以确保施工中结构的可靠性与安全性,保证成桥后桥梁线形符合设计要求。  相似文献   

13.
大跨度铁路连续梁拱组合桥梁钢管拱拱肋节段拼装是一个动态过程,是整个桥梁系统施工的关键环节。结合资阳沱江特大桥的钢管拱施工线形控制,阐述其主要方法及关键技术,并根据钢管拱拱肋节段拼装过程及特点,综合考虑各种因素的影响,运用有限元分析方法和现代测量手段获取真实的变形数据,适时进行误差调整,确保成桥时主拱线形符合设计要求。该桥的主拱顺利合龙可为类似桥型施工提供经验和方法。  相似文献   

14.
结合岳潜项目部施工的英山河大桥的施工实践,对大跨度刚构一连续梁桥的挂篮悬臂浇注施工过程中产生挠度的因素进行分析和总结,分析了影响该桥施工控制的主要因素和关键技术,论述桥面高程控制的理论和方法,通过设置合理的预拱度达到对成桥线形的控制。并采用了离散性线性系统的卡尔曼滤波来估算分析现场施工中的标高误差。调整立模标高,使成桥后线形满足设计要求。  相似文献   

15.
高速铁路大跨度钢桁梁桥通常铺设有砟轨道,以避免温度应力下钢梁形变对轨道平顺性的影响。京张高铁官厅水库特大桥为8孔跨度为110 m的钢桁梁桥,其上铺设无砟轨道,对轨道精调提出了新的要求。采用钢梁固定端CPⅢ点自由设站、现场实测梁中CPⅢ点三维坐标的方法来进行控制网复测,采用轨道惯性测量系统进行轨道快速测量,并对其作业模式、测量流程、精度控制、数据处理、平顺性及模拟调整量分析等进行研究。此外,还详细介绍了轨道精调的作业过程,对轨道相对测量、抗拔扣件处理、轨道几何状态的静态质量评价、动检TQI质量指数应用等进行了分析。轨道精调结果表明:该段钢桁梁桥无砟轨道相对测量TQI小于2,设计速度下动检车检测无"二级分",达到了较好的效果。  相似文献   

16.
结合国内各类大跨度桥梁无砟轨道施工经验,简述国内高速铁路建设中大跨度桥梁无砟轨道变形控制、测量方法及线形控制技术,为今后同类大跨度桥梁的建设提供借鉴。  相似文献   

17.
席红星 《铁道建筑》2021,(1):15-17,22
针对支架现浇大跨度钢筋混凝土系杆拱桥施工周期长、不可控因素多、成桥线形控制难度大等问题,以广大(广通—大理)铁路支架现浇80 m跨度系杆拱桥线形控制为例,采用有限元软件MIDAS/Civil建立模型,对该桥进行了全施工节段仿真分析,得到各施工阶段理论变形值.通过控制现场立模标高,对各受力工况下挠度进行监测和调整,有效保...  相似文献   

18.
南玉高铁六景郁江特大桥设计将钢-混部分斜拉桥结构引入时速350 km高速铁路领域,而300 m级以上大跨度桥上无砟轨道的竖向变形极易超限,影响列车通过的安全性和舒适性,因此,系统研究在此大跨桥梁结构上铺设无砟轨道的适应性十分必要。通过建立有限元及动力学模型,分析不同组合工况下无砟轨道结构的变形特点及动力特性,运用60 m弦测法探究各工况下无砟轨道的线形变化规律,从而确定大跨度钢-混部分斜拉桥铺设无砟轨道的适应性,并对设计和施工提出合理化建议。主要结论如下:在各种不利组合荷载作用下,桥上无砟轨道结构强度满足规范要求,列车通过大桥的各项安全性与舒适性指标均满足规范要求;混凝土收缩徐变和斜拉索升降温是影响无砟轨道线形标准的两大主因,应在无砟轨道施工前确保足够的沉降观测期和收缩徐变释放期,并充分考虑拉索的保温设计;在温度组合荷载作用下,桥上无砟轨道的60 m弦测不平顺幅值为6.79 mm,满足高速铁路静态验收标准;但在叠加列车荷载和收缩徐变后,变形弦测值均出现Ⅱ级及以上超限,通过合理设置预拱度后可有效改善轨道平顺性标准。  相似文献   

19.
针对大跨度铁路桥梁线形控制存在的不足,依托杭台铁路(杭州—台州)椒江特大桥主跨480 m四线钢桁梁斜拉桥施工实践展开探讨。通过分析线形控制重点难点确定线形控制原则,采取主墩和桥塔预抬高施工控制、主梁安装桥面绝对坐标控制、斜拉索张拉施工控制、二期恒载加载与调索施工步序控制、调索精准控制等系列措施,指导钢梁架设及线形控制,最终成桥状态下轨道线形满足设计和安全运营要求。  相似文献   

20.
以某铁路专用线上一座(48+80+48) m连续梁桥为工程背景,研究关于悬臂浇筑施工合龙方案对主桥施工过程中应力与挠度以及成桥线形的影响。根据该桥设计特点以及施工可行性,拟定4种不同的合龙方案,并对其进行有限元仿真研究。研究结果表明:不同的合龙方案对桥梁施工过程以及成桥后的应力、挠度有较大的影响;选择在拆除挂篮后,先边跨后中跨浇筑的合龙方案可以有效地减小桥梁施工过程中主桥应力以及挠度,对成桥线形能更好地控制。在该合龙方案下,考虑温度的影响对其中跨合龙段劲性骨架进行合理设计。研究成果可为该类型连续梁合龙施工方案的选择提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号