首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In polar regions sea ice is a site of enhanced primary production during winter and provides important habitat for small grazers, such as copepods. We sampled zooplankton from the sea ice and water column throughout 2005, near Dumont d'Urville station (Terre Adélie, Antarctica). Three species of ice-associated copepods were found: two calanoid copepods Paralabidocera antarctica and Stephos longipes and the harpacticoid copepod Drescheriella glacialis. P. antarctica was the most abundant of the three and was closely associated with the sea ice during most of the year. This species had a one year life cycle with a probable over-wintering period in the sea ice as nauplii and a short copepodite phase in spring. Reproduction and spawning occurred in early summer. A comparison with two other populations (near Syowa and Davis stations) along the east coast of Antarctica showed that there was a temporal shift in the life cycles of the three populations, which was linked to variability in sea ice conditions. D. glacialis was the second most abundant copepod and was more common during the winter than during summer, indicating its preference for the sea ice habitat. In autumn, the presence of D. glacialis in the deeper part of the water column suggested that this species colonised the sea ice from the benthos. S. longipes was found only in the water column near Dumont d'Urville and was not very abundant. In Terre Adélie particular environmental conditions, such as the absence of a permanent sea ice zone throughout the year, a longer time of open water, strong katabatic winds and the presence of polynyas, have influenced both the abundance and distribution of the three common ice-associated copepods.  相似文献   

2.
We consider here behavioural activity of copepods as a succession of symbols associated with swimming states: slow swimming, fast swimming, break and grooming. We characterise these symbolic sequences using tools from symbolic dynamics: probability density function of the residence times in each state; transition probability at each time step; Shannon entropy and dynamic entropy. This approach is applied to the swimming behaviour of Centropages hamatus which we have analyzed as an example of application, in order to stress the differences associated with turbulent and non-turbulent conditions. We characterise in this theoretical framework the behavioural changes exhibited by the copepod under turbulent conditions.  相似文献   

3.
Parasitic copepods belonging to two orders, Siphonostomatoida and Poecilostomatoida, are frequently reported from fish hosts in the deep sea. Three families of copepods are most commonly encountered, Sphyriidae, Lernaeopodidae and Chondracanthidae, but members of another four families, Hatschekiidae, Pennellidae, Philichthyidae and Hyponeoidae, are occasionally recorded. These parasites utilise various deep demersal fishes as hosts, especially species of the most abundant families, Macrouridae, Moridae, Synaphobranchidae and Alepocephalidae. Host specificity levels are variable, as for shallow-water fishes. In contrast, few parasites are regularly reported from fishes inhabiting the pelagic water column away from the bottom and away from the near-surface zone. Only the pennellids Sarcotretes scopeli and Cardiodectes medusaeus appear common on pelagic fishes, in the Atlantic and Pacific respectively. Host specificity levels in these two pennellid species are relatively low. It is speculated that the difficulty of encountering a host in the vast pelagic biome has restricted the diversity of parasitic copepods that have successfully colonized pelagic fishes.  相似文献   

4.
The role of copepods in the colonization and emigration processes of benthos and drift of an irrigation canal were studied. During the 3 first years of existence of the canal, fifteen species of copepods were recorded (1 diaptomid, 11 cyclopoids, 3 harpacticoids). Copepod succession in the canal was initially represented by lentic species, then by predatory species like Macrocyclops albidus that developed with the proliferation of filamentous algae and epibionts during the first two years. Primary consumers appeared from the beginning of the flowing conditions but started to dominate only from the third year. Smaller species associated with the bed sediments like the harpacticoid species Nitocra hibernica, were late colonizers. The latter as well as Paracyclops fimbriatus and Eucyclops serrulatus were the dominant copepod species in the canal. Total copepod density in the benthos ranged from 15,800 to 68,000 ind./m2, with a mean of 7.6% of the total zoobenthos. Copepods constituted up to 25% of the total faunal drift density, ranging from 50 to 140 ind./m3. Their highest abundance was observed around midnight. A three-fold increase of the discharge temporarily affected the drift density, but did not change the diel rhythm of the drift. Cyclopoid copepods namely P. fimbriatus (54.77%), copepodid cyclopoids (20.76%) and E. serrulatus (16.11%) formed the main part of the drift samples. The harpacticoid Nitocra hibernica was a minor participant in the drift processes.  相似文献   

5.
This paper is based on an advanced ecosystem model of the Baltic Sea (ERGOM [J. Mar. Sys. 25 (3–4) (2005) 405]), but with an increased resolution of the zooplankton stage variable [J. Plankton Res. 23 (2001) 1217; ICES Marine Science 219 (2003) 208]. The model copepods are represented by five stages: eggs, an aggregated variable of nauplii, two aggregated groups of copepodites and adults. The transfer among the stages, i.e., hatching, molting and reproduction, is controlled by food availability and temperature.As usual, the model food web is truncated at the level of zooplankton. The study explores the effects of different parametrization of zooplankton mortality and looks in particular on light-dependent rates. The light climate may serve a proxy for the effects of visual feeding of fish larvae and fish. Different choices of the mortality parameters can result in remarkable differences in abundances and biomass of the model zooplankton and in the timing of its development.It is found that the different choices of mortality affect the development of populations in several ways: Relative small initial differences of abundances at the beginning of the spring bloom are important for the development of the model populations. Higher mortality rates are less important at food rich conditions than at scarce resources. At low phytoplankton levels, the individual development of the copepods through the stages can be faster for elevated mortality rates because then less animals have to share the available food.  相似文献   

6.
Because the reproductive fitness of a copepod is influenced by its ability to discriminate between conspecific and heterospecific mates, it is important to understand the mechanisms involved in these complex mate-recognition systems. Several lines of evidence suggest that chemical communication plays a role in mate location, recognition and reproduction in copepods. However, the relative importance of chemosensory cues, as well as other factors, including hydromechanical and morphological cues, remains unclear. Some studies show that mating ‘mistakes' occasionally occur in nature, which for species that mate only once, would have considerable effects on fitness. By reducing the likelihood of heterospecific matings, species-specific mate location and recognition chemicals have high adaptive value. The relative importance and molecular characteristics of these chemicals, whether diffusible or contact signals, may explain differences in premating and copulatory behavior observed among different copepod taxa. Current research suggests that both forms of chemical communication significantly influence the reproductive success of copepods. In this review, we summarize examples from the literature that may serve as a means to critically analyze postulated ideas and offer new questions for future study.  相似文献   

7.
Turbulence has a strong influence on plankton contact rate, which is a crucial parameter for plankton ecology. In the field of particle-turbulence interactions, it is now well known that fully developed turbulence does not always homogenise particle distributions, but instead creates, in some well-defined conditions, preferential concentrations of heavy particles. Many studies have considered the influence of this type of preferential concentration on particle contact rate. We consider here the possible application of these results to copepods, assuming that some results obtained for heavy particles are still valid for light particles. Using parameter values representative of copepod species in coastal waters and open ocean, we numerically estimate the possible enhancement of copepod contact rates due to the preferential concentration by turbulence. The assessment is done by using data from a laboratory experiment: we find from the trajectory analysis of small neutrally buoyant particles, that the preferential concentration effect increases the contact rate up to 140%. We argue that this effect may be more pronounced for higher Reynolds numbers, and may have important ecological applications.  相似文献   

8.
The goal of this paper is to illustrate how in juvenile and adult subtropical marine planktonic copepods various structures or morphological features function in concert to detect prey and predators. Without motion by either food (e.g. flagellate, ciliate) or feeder (e.g. feeding current) or both (e.g. Acartia spp. and ciliate) few feeding activities will occur. Through motion a food particle is either perceived mechanically or chemically to be followed by appendage activities. A combination of mechano- and chemosensors on their cephalic appendages (and probably on other extremities) serve juvenile and adult copepods to perceive signals. Perception is followed by alternation of motion and sensing by these appendages, or by no motion at all (e.g. behavior by Eucalanus pileatus when perceiving a weak hydrodynamic signal). Non-moving and extended sensors (setae) are best suited for mechanical/hydrodynamic perceptions in those copepods which lack a feeding current and hardly move. Numerous mechanosensors arranged in three dimensions on the first antennae (A1) are required to perceive the precise location of moving prey at a distance (e.g. Oithona feeding on ciliates but also sinking particles). Those copepods which create a weak or intermittent feeding current can supplement nutrition with carnivory, which requires perception by the A1 (e.g. Centropages velificatus adults). These two groups require, in addition to perception of prey motion/location, rapid motion by their appendages (A1, second maxillae M2, etc.) to capture the prey. Nauplii, which satiate at far lower food levels than adults, have one of several means of food acquisition: encounter through forward motion, perception through feeding current, or perception of a moving food particle. The nearly continuous motion of most calanoid nauplii makes them vulnerable to predation because all three pairs of appendages are usually moving. Opposite are nauplii of cyclopoid and a few calanoid species which move only occasionally. Copepodid stages and adults use non-moving and often extended setae on the tips of their A1 to perceive predators at a distance. This structure and their pronounced escape motion may reduce their vulnerability to predation as compared to nauplii.  相似文献   

9.
The Southern Ocean is an extreme environment, where waters are permanently cold, a seasonal ice cover extends over large areas, and the solar energy available for photosynthesis is severely restricted, either by vertical mixing to considerable depths or, especially south of the Antarctic Circle, by prolonged seasonal periods of low or no irradiance. Such conditions would normally lead to low productivity and a water column dominated by recycling processes involving microbial components of pelagic communities but this does not seem to be the case in the Southern Ocean, where there is efficient export to large apex predators and deep waters. This paper investigates the role of large microphagous zooplankton (salps, krill, and some large copepods) in the partitioning of biogenic carbon among the pools of short- and long-lived organic carbon and sequestered biogenic carbon. Large microphagous zooplankton are able to ingest microbial-sized particles and thus repackage small, non-sinking particles into both metazoan biomass and large, rapidly sinking faeces. Given the wide spatio-temporal extent of microbial trophic pathways in the Southern Ocean, large zooplankton that are omnivorous or able to ingest small food particles have a competitive advantage over herbivorous zooplankton. Krill efficiently transfer carbon to a wide array of apex predators and their faecal pellets are exported to depth during occasional brief sedimentation episodes in spring time. Salps may be a significant link towards some fish (directly) and other apex predators (indirectly) and, at some locations (especially in offshore waters) and time, they may account for most of the downward flux of biogenic carbon. Large copepods are a trophic link towards fish and at least one whale species, and their grazing activity generally impedes the export of organic particles to depth. As a result, biogenic carbon is channelled mainly towards apex predators and episodically into the deep ocean. Without these original interactions, Antarctic waters might well be dominated by microbial components and recycling processes instead of active export from the generally small primary producers towards large apex predators.  相似文献   

10.
We describe application of a new apparatus that permits simultaneous detailed observations of plankton behavior and turbulent velocities. We are able to acquire 3D trajectories amenable to statistical analyses for comparisons of copepod responses to well-quantified turbulence intensities that match those found in the coastal ocean environment. The turbulence characteristics consist of nearly isotropic and homogeneous velocity fluctuation statistics in the observation region. In the apparatus, three species of copepods, Acartia hudsonica, Temora longicornis, and Calanus finmarchicus were exposed separately to stagnant water plus four sequentially increasing levels of turbulence intensity. Copepod kinematics were quantified via several measures, including transport speed, motility number, net-to-gross displacement ratio, number of escape events, and number of animals phototactically aggregating per minute. The results suggest that these copepods could control their position and movements at low turbulence intensity. At higher turbulence intensity, the copepods movement was dominated by the water motion, although species-specific modifications due to size and swimming mode of the copepod influenced the results. Several trends support a dome-shaped variation of copepod kinematics with increasing turbulence. These species-specific trends and threshold quantities provide a data set for future comparative analyses of copepod responses to turbulence of varying duration as well as intensity.  相似文献   

11.
This describes a study of the pelagic zone of Lake Baikal with particular reference to copepods. In addition the cycling of matter and energy in lacustrine basins is described.  相似文献   

12.
The warm oceanic current Kuroshio and the continental shelf water of the East China Sea meet in the western North Pacific, north of Taiwan and form an upwelling when they converge. The intrusion of the Kuroshio westward over the East China Sea shelf thus results in complicated exchanges of waters between these two water masses. We studied the copepods in the plankton collection taken from an east–west transect crossing these waters in April 1995 when the intrusion of the Kuroshio over the East China Sea shelf was beginning to retreat. The taxonomy of copepods was carefully treated and erroneous species records reported in the literature were guarded against. We evaluated the copepod diversity, the association of copepod species, and the association of stations in these water masses.  相似文献   

13.
The objective of this research was to examine if certain strains of Bacillus bacteria, could survive in dry powder products and if so, could the bacteria degrade organic contaminants in saline wastewater on a ship. As part of the study, we isolated 7 domesticated strains named NY1, NY2,..., and NY7, the strain NY6 showed to have the best performance for organic matter degradation and could survive in dry powder more than 3 months. NY6 was identified as Bacillus aerius, based on the morphological and physic-chemical properties. Its optimal growth conditions were as follows: salinity was 2%; temperature was 37°C; pH was in 6.5–7.0; best ratio of C: N: P was 100:5:1. The capability of its dry powder for Chemical Oxygen Demand (COD) removal was 800mg COD/g in synthesized marine wastewater with 2% salinity. The spores in the dry powder were 1.972×108 g ?1.  相似文献   

14.
Epischura baicalensis Sars is a dominant pelagic species of Lake Baikal zooplankton. This is endemic to Lake Baikal and inhabits the entire water column. It produces two generations per year: the winter–spring and the summer. These copepods develop under different ecological conditions and vary in the duration of life stages, reproduction time, maturation of sex products and adult males and females lifespan. The total life period of the animals from each generation is one year. One female can produce 10 egg sacks every 10–20 days during its life time. The ratio of males and females is 1:1. One of the most essential features of the ecology of E. baicalensis is the alteration of its mass inhabited areas during a year, as well as in day time. This is due to the need for various conditions for gonad maturation, reproduction, nourishing and protection from being consumed by planktivors.  相似文献   

15.
Two hydrobiological transects across the East Greenland Shelf and the open waters of Fram Strait in summer were chosen to illustrate the distribution and production of phyto- and zooplankton in relation to water masses and ice cover. The parameters used were temperature and salinity, inorganic nutrients, chlorophyll a, primary production, phytoplankton species composition, abundance of the dominant herbivorous copepods Calanus finmarchicus, C. glacialis, C. hyperboreus, Metridia longa and egg production of C. finmarchicus and C. glacialis. Grazing impact of copepodites and adults of these four species was modelled for each station by using egg production rates as an index of growth. Seasonal development of plankton communities was closely associated with the extent of the ice cover, hydrographic conditions and the water masses typical of the different hydrographic domains. Four regions were identified from their biological activities and physical environment: The Northeast Water polynya on the East Greenland Shelf, with a springbloom of diatoms and active reproduction of herbivorous copepods. The pack ice region, dominated by small flagellates and negligible grazing activities. The marginal ice zone, with high variability and strong gradients of autotroph production related to eddies and ice tongues, an active microbial loop and low egg production. The open water, with high station-to-station variability of most of the parameters, probably related to hydrographic mesoscale activities. Here, Phaeocystis pouchetii was a prominent species in the phytoplankton communities. Its presence may at least partly be responsible for the generally low egg production in the open waters. Grazing impact on primary production was always small, due to low zooplankton biomass in the polynya and due to low ingestion in the remaining regions.  相似文献   

16.
Various types of floating solar photovoltaic (FPV) devices have been previously proposed, designed and constructed with applications primarily limited to onshore water bodies or near-shore regions with benign environmental conditions. This paper proposes a novel FPV concept which can survive harsh environmental conditions with extreme wave heights above 10 m. This concept uses standardised lightweight semi-submersible floats made of circular materials as individual modules. The floating modules are soft connected with ropes to form an FPV array. We first present the conceptual design of the floats and the connection systems, including hydrostatic, hydrodynamic, and structural assessments of the floats. To verify the motion response performance, we carried out 1:60 scaled model tests for a 2 by 3 array under regular and irregular wave conditions. From the time series and response spectra, the motion characteristics of the array and the mooring responses are analysed in detail. The proposed concept exhibits excellent performances in terms of modular motions with limited wave overtopping and no contact is observed between adjacent modules under the extreme wave conditions. The findings of this study can serve as a valuable reference to developing reliable and cost-effective FPV technologies for offshore conditions.  相似文献   

17.
The egg production of marine copepods correlates with a range of variables, including the availability of organic carbon (C), nitrogen (N) and the polyunsaturated fatty acids (PUFAs) 20:5(n−3) (EPA) and 22:6(n−3) (DHA). However, an understanding of which substrates limit egg production in the natural environment has yet to be reached. The quantities of C, N, EPA and DHA ingested, derived from parental biomass, and invested in eggs by female Calanus finmarchicus during a 5-day incubation experiment were examined using stoichiometric theory to determine which substrate was limiting. The majority of each substrate was derived from parental biomass, and therefore the existing stoichiometric theory is developed to include this route of supply. The females were essentially devoid of lipid reserves, as evidenced by the lack of the storage fatty acids 20:1(n−9) and 22:1(n−11), and carbon limitation was predicted under most of the scenarios examined. Nitrogen limitation was only apparent when carbon and nitrogen utilisation efficiencies were assumed to be high (0.5) and low (0.4) respectively. PUFAs were assumed to be utilised with high efficiency (0.9), and were never predicted to limit production. This work highlights the need for a more detailed understanding of the maintenance requirements that marine copepods have for C, N, EPA, and DHA and hence the efficiencies with these substrates can be utilised for growth.  相似文献   

18.
Present knowledge of feeding tactics and behaviour, food composition and consumption, and feeding strategies of planktonic cyclopoid copepods is synthesized. Planktonic freshwater cyclopoids consume both plant and animal food. Predatory feeding is highly selective: prey species differ in their size, defense structures, the distance at which they are recognized by the cyclopoid, defensive behaviour when attacked, and their occurrence in the same space as the predator. Within a prey species, cyclopoids select for smaller individuals. The impact of cyclopoid predation on the other zooplankton may be an important source of mortality. However, algal material is consumed to a large extent by the adult and later developmental stages and is a necessary food source for the youngest stages, which have to compete with other planktonic herbivores. Some implications of these food requirements for life strategies of planktonic cyclopoid species in the seasonally changing environments are discussed.  相似文献   

19.
Mesozooplankton samples from the 4270-m deep Ierapetra Basin in the oligotrophic Levantine Sea have revealed a strong temporal variability in abundance and composition hitherto unknown for the deep sea pelagic zone. The phenomenon reflected by a survey in June 1993 as compared to January 1987 is assessed by (i) the increase of the mesozooplankton standing crop throughout the water column, (ii) the absence of a decline in mesozooplankton abundance with increasing depth below 1000 m, (iii) the outstanding dominance of two interzonal calanoid copepods at bathypelagic and abyssopelagic depths and (iv) a substantial faunal change due to the codominance of Calanus helgolandicus, which was found for the first time in the area. The underlying hydrographical factors are addressed in the light of the Eastern Mediterranean Transient (EMT). Apart from a possible long-term faunal change, the EMT may exaggerate episodic plankton blooms and surface-abyssopelagic coupling in space and time.  相似文献   

20.
The Mediterranean ichthyofauna is composed of 652 species belonging to 405 genera and 117 families. Among these, 182 were studied for their parasitic copepods. The analysis of all the works conducted on these crustacea yielded 226 species distributed in 88 genera and 20 families. For each fish species we have established a file providing the species name of the fish, its family, its geographical distribution within the Mediterranean and some of its bio-ecological characteristics. Within each file, all the parasitic copepod species reported on each host species were listed. This allowed to know the species richness (SR) of these hosts. We thus produced 182 files within which 226 copepod species are distributed. A program was created under the Hypercard software, in order to analyse our data. Two parameters were studied. The first one is the mean species richness (MSR), which corresponds to the mean of the different SR found on the different host species. The second is the parasite–host ratio (P/H), which is the ratio of the number of copepod species by the number of host species. These parameters are calculated by our program for all the 182 species of Mediterranean fishes retained in our investigation, on the first hand, and, on the second hand, for one particular group of fish species. We used the following variables to investigate their correlations with copepod species richness: taxonomy—fish families, genera and species; biometry—maximal size of the adult fish; eco-ethology—mode of life (benthic, pelagic or nectonic), displacements (sedentary, migratory with environmental change, or migratory without environmental change), behaviour (solitary or gregarious). Other variables (colour, food, reproduction, abundance, distribution area) were also analysed but did not reveal any clear correlation. Providing that our study does not rely on quantitative (prevalence, intensity) but qualitative basis our aim was only to reveal some tendencies. These tendencies are as follows: (1) In many cases, parasite and host phylogeny seem to play an important role. There are fish families with copepods and families with few species of these parasites. The phyletic constraints could be due to the morphological characteristics of the habitat (e.g. structure of the gills) or biological/ecological characteristics that we were unable to identify. (2) It appears that the presence in a same environment of related fish species (e.g. several species of the same genus, or numerous genera of the same family) is correlated with high parasite richness. A likely explanation is that such situations favours alternated processes of lateral transfers and speciation. (3) Some eco-ethological criteria seem to favour the establishment of a large parasite species richness. It should be noted for instance that Mediterranean fishes the most often infected with copepods are generally nectonic or pelagic, migratory, and gregarious species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号