首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
为了解新型大纵肋钢-超高性能混凝土(UHPC)正交异性组合桥面板对传统正交异性钢桥面板的受力性能的改善效果,以港珠澳大桥深水区非通航孔6×110m连续钢箱梁桥为背景,建立全桥有限元模型,对2种桥面方案的静力性能进行对比,建立节段有限元模型,对比2种桥面方案U肋与顶板连接焊缝处的疲劳性能,并分析U肋开口宽度和UHPC结构层厚度对大纵肋钢-UHPC正交异性组合桥面板疲劳性能的影响。结果表明:2种桥面方案下钢箱梁控制点的位移和应力相差不大,所提出的大纵肋钢-UHPC正交异性组合桥面板在中等跨度连续梁桥中具有较好的适用性;大纵肋钢-UHPC正交异性组合桥面板的疲劳性能显著优于传统正交异性钢桥面板;增大U肋开口宽度会导致U肋与顶板连接焊缝应力幅增加,增加UHPC结构层厚度能显著降低U肋与顶板连接焊缝应力幅。  相似文献   

2.
为研究U肋内隔板及其参数对正交异性钢桥面板疲劳性能的影响,以某钢桁梁柔性拱铁路桥为背景,针对其钢桥面板制作2个足尺模型(试件1无内隔板,试件2设置内隔板)进行疲劳试验,研究疲劳裂纹的产生情况,采用ANSYS软件建立有限元模型,分析产生裂纹处纵肋腹板的应力分布情况,应用断裂力学方法评估钢桥面板的疲劳寿命,并分析内隔板参数对钢桥面板应力的影响。结果表明:纵肋腹板与横梁帽孔交汇处易发生疲劳裂纹,2个试件均在此处出现疲劳裂纹;设置纵肋内隔板能改善纵肋腹板与横梁帽孔交汇处的应力集中现象,有效提高纵肋腹板和横梁帽孔处的疲劳强度;内隔板厚度对钢桥面板的应力影响不大,适当增加内隔板高度差可减小纵肋腹板处主应力。  相似文献   

3.
为了改善常规正交异性钢桥面板的疲劳开裂问题,提出新型半开口纵肋正交异性钢桥面板结构,该结构通过在纵肋底部开口实现顶板与纵肋双面焊接,提高焊缝质量,降低纵肋与横隔板的刚度差。为验证该新型钢桥面板的疲劳性能,设计制作钢桥面板节段足尺模型进行疲劳试验,采用应力应变法、数字图像法、声发射法等技术监测应力和裂纹发展。结果表明:在1 000万次循环加载过程中,新型钢桥面板各构造细节处均未出现疲劳裂纹;与常规正交异性钢桥面板相比,新型钢桥面板纵肋与横隔板连接处的应力幅大幅降低;新型钢桥面板结构显著改善了正交异性钢桥面板的抗疲劳性能。  相似文献   

4.
为给正交异性钢桥面板的疲劳裂纹处治提供参考,对桥面板与闭口肋、竖向加劲肋焊缝连接部位及纵肋与横肋的焊缝相交部位的疲劳损伤进行了研究。研究结果显示:重交通量及大型重车荷载是钢桥面板疲劳损伤的主要原因。桥面板与闭口肋相交的焊缝部位的疲劳损伤主要有焊缝走向裂纹和钢桥面板纵向裂纹。钢桥面板纵向裂纹可通过红外线和超声波等手段进行检测。针对钢桥面板疲劳损伤类型可采取多种处治措施,其中焊缝走向裂纹可采用确保熔深、换肋、桥面板SFRC铺装补强、焊接修补等措施进行修补,钢桥面板纵向裂纹可采用加大桥面板厚度、设止裂孔、焊接修补等措施进行修补。  相似文献   

5.
为研究钢桥面板疲劳裂纹耦合扩展机理,建立焊接分析有限元模型,对纵肋-顶板连接细节、纵肋-横隔板连接细节的焊接全过程进行数值模拟,基于扩展有限元方法建立钢桥面板数值断裂力学模型,对疲劳敏感细节裂纹静、动态扩展行为进行分析。焊接过程分析结果表明:纵肋-顶板连接焊缝区域、纵肋-横隔板焊缝端部区域均存在较大的残余拉应力,峰值接近钢材屈服强度;横隔板挖孔边缘存在切向残余拉应力,峰值约为200 MPa。疲劳裂纹扩展行为分析结果表明:纵肋-顶板连接细节在车辆荷载单独作用下以受压为主,考虑残余应力场作用后细节处于拉-拉应力状态,疲劳裂纹为Ⅰ型主导的Ⅰ-Ⅱ-Ⅲ型复合裂纹;车辆偏载作用下纵肋产生扭转变形,计入残余应力后纵肋-横隔板连接焊缝焊趾受拉开裂,萌生于纵肋焊趾、向纵肋腹板扩展的疲劳裂纹为Ⅰ型主导的Ⅰ-Ⅱ-Ⅲ型复合裂纹,萌生于纵肋-横隔板连接焊缝横隔板侧焊趾和横隔板挖孔边缘的疲劳裂纹为Ⅰ-Ⅱ型复合裂纹;纵肋对接细节的疲劳裂纹为Ⅰ型裂纹,车辆荷载作用下以受拉为主,位于纵肋底板弧形过渡区的裂纹相较于纵肋底板中间区域具备更强的扩展能力。  相似文献   

6.
通过对国内外正交异性钢桥面板的研究发现,其破坏的主要形式是钢桥面板的疲劳破坏,针对钢桥面板在使用过程中发生疲劳破坏的原因,以东莞水道桥为依托,选取了纵向加劲肋类型、横隔板挖孔形式及纵肋内小隔板焊接形式三个主要参数,研究正交异性钢桥面板在不同参数下的疲劳应力及应力集中系数变化情况。研究结果表明:与开口加劲肋相比,闭口加劲肋的加劲效率更高,U形肋的应力集中系数显著低于其他三种截面形式纵肋;在车辆荷载作用下,当横隔板采用梯形开孔形式时,其与纵肋、顶板间的焊缝处应力水平比较均衡;通过设置小横隔对桥面板刚度进行局部增强,能有效降低顶板与纵肋、顶板与横隔板、纵肋与横隔板间三处焊缝的应力水平和应力集中程度。  相似文献   

7.
新型UHPC—大纵肋波折板正交异性桥面板取消了顶板与纵肋焊缝,减少了横隔板与纵肋焊缝,为改善正交异性钢桥面板控制部位的疲劳性能提供了一个有效新途径。然而,由于波折板与横隔板保留横向焊缝,其疲劳风险仍然可能存在,故针对纵肋与横隔板位置的关键疲劳细节,采用数值分析并结合热点应力法对各参数影响下的轮载应力幅和疲劳寿命进行评估验证。结果表明,新型组合桥面板的大纵肋波折钢板及横隔板的疲劳寿命主要受弧形切口顶应力幅控制,施工时应加强切口打磨质量,防止疲劳开裂。另外,UHPC板厚增大、横隔板间距减小以及横隔板厚度加大时,各疲劳细节应力幅均有减小趋势,但加大纵肋高度或填充混凝土补强纵肋后,其各疲劳细节应力幅增减趋势并不一致。通过合理参数设计可使得各疲劳细节应力幅趋势均匀,获得优异的抗疲劳性能。  相似文献   

8.
为实现钢桥面板纵肋对接焊缝疲劳开裂的主动加固,提出基于铁基形状记忆合金(Fe-SMA)的主动加固方法,即通过栓接Fe-SMA并采用热电阻激励使其自动产生预应力实现主动加固.为验证其有效性,采用ANSYS软件建立港珠澳大桥的单纵肋节段试验模型的实体有限元模型,利用线弹性断裂力学对纵肋对接焊缝处疲劳裂纹前缘的应力强度因子进...  相似文献   

9.
纵肋对接焊缝疲劳开裂作为钢桥面板结构的重要失效模式之一,严重危害桥梁结构耐久和安全运营。通过引入超声导波技术,结合对接焊缝的几何特点与疲劳失效特征,建立了基于超声导波的钢桥面板纵肋对接焊缝疲劳裂纹检测方法。首先搭建了超声导波裂纹检测试验系统,并结合钢桥面板纵肋对接焊缝疲劳试验,对超声导波检测纵肋对接焊缝裂纹的适用性和准确性进行了验证。在此基础上,通过数值分析方法探究了超声导波在纵肋对接焊缝局部区域的传播机制,并进一步分析了不同焊缝与裂纹参数对超声导波传播的影响规律。研究结果表明:采用超声导波方法能够有效检测钢桥面板纵肋对接焊缝的疲劳裂纹,并确定疲劳开裂的位置;超声导波有限元理论分析与试验测试结果符合较好,验证了有限元模型的正确性;采用单面激励的方式在纵肋中形成的超声导波包括A0和S0模态,其中A0模态占主要部分,超声导波传递至焊缝形成的反射波以A0模态为主,而较深裂纹形成的反射波以S0模态为主;不同焊缝和裂纹参数对超声导波的反射波和透射波表现为差异性的影响。所采用的基于超声导波的对接焊缝疲劳裂纹检测方法,可为钢结构桥梁疲劳损伤的检测与监测提供科学依据。  相似文献   

10.
正交异性钢桥面板疲劳问题突出,纵肋与顶板焊缝处是其关键疲劳易损部位,研究该部位疲劳裂纹的扩展过程并确定关键影响因素及其效应,有助于深刻理解其疲劳损伤机理。建立正交异性钢桥面板疲劳试验节段模型的有限元分析模型,将纵肋与顶板焊缝焊根处的疲劳裂纹近似为半椭圆形裂纹,基于断裂力学实现其扩展全过程的三维数值模拟。在此基础上研究初始裂纹的纵向位置和初始裂纹形状对疲劳裂纹扩展过程的影响,阐明扩展过程中的疲劳裂纹的形状变化,以及疲劳裂纹关键部位应力强度因子幅值的变化规律。研究表明:对于典型的正交异性钢桥面板纵肋与顶板焊缝,在纵向一段范围内,初始裂纹的纵向位置对裂纹扩展的影响不大;初始裂纹形状对裂纹扩展的影响主要体现在裂纹扩展的初始阶段,经过一段时间的扩展之后,不同形状的初始裂纹将演变为相对稳定的形状;持续一段时间后,裂纹将逐渐变得较为扁长;疲劳裂纹在深度方向上扩展超过约顶板厚度一半时,最深点的扩展速率将会减慢;深度相同的裂纹,形状越扁长时越倾向于向深度方向扩展,越不扁长时越倾向于向长度方向扩展。  相似文献   

11.
周细辉  黄坤 《中外公路》2019,39(3):138-142
针对钢桥面板纵肋对接焊缝中典型的疲劳开裂情况,为研究萌生于该处的疲劳裂纹在后期扩展过程中所表现的特征,以及根据其扩展机理采用在纵肋底板栓接钢板的加固效果的评估,利用Ansys软件建立了纵肋对接焊缝处的疲劳裂纹有限元模型,采用相互作用积分与有限元相结合的方法得到的裂纹前缘应力强度因子来对研究对象进行分析。结果表明:纵肋对接焊缝处疲劳裂纹的扩展过程中Ⅰ型应力强度因子KⅠ与等效应力强度因子Keff之间数值差距很小,Ⅰ型(张开型)开裂模式在扩展过程中占主导地位;Ⅰ型应力强度因子KⅠ随着裂纹扩展尺寸的增加一直处于增大的趋势,由于应力强度因子是裂纹扩展速率的主要参量,疲劳裂纹扩展速率随着裂纹扩展的进行而逐渐增大;通过对纵肋底板栓接钢板加固措施的理论分析,该加固方法能够大幅改善纵肋对接焊缝疲劳裂纹前缘的应力强度因子,使疲劳裂纹的扩展得到有效控制。  相似文献   

12.
为了研究正交异性钢桥面板U肋对接焊缝疲劳细节的疲劳性能,应用有限元软件ABAQUS建立了局部的钢箱梁节段模型。探讨了有限元模型中关注细节附近网格划分大小,以及疲劳荷载的加载方式对关注细节应力提取结果的影响,并确定了U肋对接疲劳细节的应力幅分析过程。研究结果表明:在确保与网格大小为0.5t时对比的精确度≥95%的情况下,U肋与横隔板连接处附近U肋网格大小最大可取2t;横隔板间U肋对接焊缝处的U肋网格大小最大可取8t;横向加载分析时,将疲劳荷载布置于U肋正上方、U肋间和U肋腹板上方的加载方式既简化了加载步骤,又能得到细节的实际最不利荷载位置;疲劳荷载加载分析时,钢桥面板盖板网格不大于100 mm,加载的荷载步不大于100 mm时可以得到比较精确的结果;对于U肋对接疲劳细节,正确的应力幅分析过程为:首先将疲劳车辆的双轴组纵向中心线与车道中心线相对应进行纵向加载,获得U肋对接细节取得应力最大值时对应的轮载纵向位置,然后在该纵向位置进行横向移动加载,确定U肋对接细节最不利的横向位置,最后在该最不利横向位置进行纵向加载获取纵向应力历程曲线,再通过应力历程曲线计算该细节的应力幅。  相似文献   

13.
针对正交异性钢桥面板顶板-U肋焊缝疲劳开裂问题,提出一种在钢桥面顶面粘贴小尺寸矩形板的疲劳加固方法.以某主跨1490 m的悬索桥为背景,建立正交异性钢桥面局部有限元模型,计算加固前、后钢桥面板顶板-U肋焊缝在车轮横向荷载与纵向移动荷载下的应力情况;分析加固板厚度、横桥向尺寸、顺桥向尺寸和材料属性等参数对加固效果的影响规...  相似文献   

14.
为了深刻认识高疲劳抗力钢桥面板的疲劳特性,准确评估其结构体系的疲劳抗力,基于等效结构应力建立了考虑焊接微裂纹对钢桥面板疲劳性能劣化效应的结构体系疲劳抗力评估方法,并通过疲劳试验对所建立的评估方法进行了验证。在此基础上采用所建立的结构体系疲劳抗力评估方法对高疲劳抗力钢桥面板的疲劳开裂模式、疲劳抗力及其影响因素等相关关键问题进行系统研究。研究结果表明:焊接微裂纹的存在会显著降低钢桥面板的疲劳性能,导致主导疲劳开裂模式发生迁移;结构体系设计参数对纵肋与顶板双面焊构造细节和纵肋与横隔板新型交叉构造细节疲劳性能的影响有显著区别,其中纵肋与顶板双面焊构造细节的疲劳性能主要对顶板厚度的变化较为敏感,其疲劳性能随着顶板厚度的增加而显著提升,而纵肋与横隔板新型交叉构造细节的疲劳性能同时受多个参数的影响,其疲劳性能随着顶板厚度、横隔板厚度和纵肋高度的增大而提升,随着横隔板间距和纵肋底板与横隔板之间焊缝长度的增大而降低;传统钢桥面板的主导疲劳开裂模式为纵肋腹板与横隔板交叉构造细节围焊焊趾开裂,高疲劳抗力钢桥面板的主导疲劳开裂模式为纵肋底板与横隔板交叉构造细节纵肋焊趾开裂;相对于传统正交异性钢桥面板,高疲劳抗力钢桥面板结构实现了主导疲劳开裂模式的迁移,疲劳性能显著提高。  相似文献   

15.
为解决正交异性钢桥面纵肋-横隔板接头疲劳开裂问题,根据正交异性钢桥面构造特点,提出了一种疲劳性能良好的新型无切口正交异性钢-UHPC组合桥面,能简化制造工艺,提高经济性能。基于ANSYS数值分析平台建立双尺度有限元模型,采用欧洲规范疲劳荷载模型III开展纵桥向移动加载,获得了纵肋-横隔板接头在3种典型横向位置下的轮载热点应力响应曲线。结合轮载作用下的应力云图和变形图,揭示了构造细节力学机理,评估了疲劳性能,并探讨了构造参数的影响。应力响应曲线表明:纵肋-横隔板接头在轮载作用下的应力响应以受压为主,局部效应显著,纵桥向应力影响线短,因而可根据轮载应力响应曲线识别轴组中的单轴。应力云图和变形图表明:构造细节在轮载作用下出现了显著应力集中,因新型桥面横隔板截面削弱较小,横隔板侧应力梯度小于纵肋侧。纵肋-横隔板接头应力最大点均不在纵肋正底部位置,而是与纵肋中心线成一定角度。由于纵肋-横隔板接头与面板距离较大,UHPC层和面板厚度对其疲劳性能改善并不明显。增加横隔板厚度能减小横隔板侧应力幅,但会增加纵肋侧应力幅,横隔板厚度可取10 mm。增大纵肋腹部厚度可有效减小纵肋侧应力幅,16 mm的纵肋腹部厚度可使得纵肋-横隔板接头实现无限疲劳寿命。  相似文献   

16.
针对正交异性钢桥面板,设计了相应的典型焊接构造细节,并进行了疲劳试验研究.疲劳试验结果表明,(1)横肋受力比较复杂,在箱梁端部横隔板与纵肋焊接位置下端首先出现细微的疲劳裂纹;(2)纵肋与顶板焊缝连接处外侧顶板与纵肋的损伤发展较大,疲劳破坏的位置为面板与纵肋交汇处焊缝构造,且均发生在面板母材上,而内侧顶板则无明显的损伤.同时,基于残余应变模型,研究了正交异性钢桥面板损伤发展历程,并利用连续分段函数模型描述整个寿命过程中的损伤累积规律,与已有试验资料对比表明了该函数模型的正确性.  相似文献   

17.
邓斌 《广东公路交通》2023,(5):28-31+37
钢桥面板疲劳问题是目前钢桥研究的热点课题之一,其中面板纵肋连接细节是钢桥面板危害较严重的疲劳细节。铺装层与面板共同受力决定面板纵肋连接细节的疲劳应力。为分析铺装层对该细节的影响,以国内某大跨度钢桥为对象,建立了疲劳分析有限元模型。计算结果表明:当钢桥面板厚度为16mm时,考虑铺装层受力后,面板纵肋连接细节最大疲劳应力幅由45.3MPa降低至36.7MPa。不同季节造成的铺装层刚度变化对该细节疲劳性能的影响不能忽略。  相似文献   

18.
为确定钢桥面板U肋与顶板双面焊连接相比单面焊连接疲劳性能的改善效果,以某实桥正交异性钢桥面板节段为对象,采用ANSYS软件建立有限元模型,计算不同工况下各疲劳易损部位的切口应力幅,并分析双面焊连接疲劳性能的影响因素。结果表明:U肋与顶板双面焊连接的最大切口应力幅比单面焊时减小19.1%,能有效提高U肋与顶板连接焊缝的疲劳性能;U肋与顶板单面焊连接的最不利疲劳易损部位为焊根,而双面焊连接的最不利疲劳易损部位变为外侧焊趾;焊缝未熔透间隙长度和高度对U肋与顶板双面焊连接疲劳性能的影响较小;增大焊缝和顶板夹角可显著降低双面焊连接的最大切口应力幅,提高U肋与顶板双面焊连接的疲劳性能。  相似文献   

19.
针对目前大纵肋正交异性钢桥面板疲劳影响因素及抗疲劳性能研究较少的情况,本文基于有限元软件ANSYS,分别建立普通和大纵肋两个正交异性钢桥面板有限元模型,以3个典型疲劳细节为研究对象,基于最大主应力为评价指标,研究不同横肋板、U肋和顶板厚度的工况下两个正交异形钢桥面板的疲劳敏感性,详细对比了普通和大纵肋两个正交异性钢桥面板的疲劳特征。  相似文献   

20.
为改善传统正交异性钢桥面板纵肋与横肋交叉构造细节的疲劳性能,提高其疲劳抗力,提出一种新型承托式横肋开孔形式,采用ANSYS软件建立大纵肋组合桥面板节段有限元模型,基于热点应力法和线性损伤累积理论分析纵肋与横肋交叉构造细节的疲劳性能,并与4种典型横肋开孔形式进行对比。结果表明:在不考虑残余应力的情况下,相对于4种典型横肋开孔形式,新型承托式横肋开孔形式的疲劳性能显著提高;纵肋与横肋交叉构造细节最大应力幅的出现位置转移至纵肋底部与横肋焊趾对应处内侧,应力幅为30.2MPa,满足设计要求;纵肋底部焊趾处应力为压应力。新型承托式横肋开口形式能够改善纵肋与横肋交叉构造细节的疲劳性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号