首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
武汉鹦鹉洲长江大桥主桥为三塔四跨结合梁悬索桥,加劲梁跨径布置为(200+2×850+200)m。该桥南锚碇基础经多方案比选采用圆形嵌岩地下连续墙基础。地下连续墙外径68m、壁厚1.5 m,底板厚6 m,顶板厚14.5 m。导墙由2个L形钢筋混凝土墙组成,墙间距1.6 m;帽梁总宽4.0 m、高2.5 m;内衬厚1.5~2.5 m;在地下连续墙外围设置环形防渗帷幕。采用理正深基坑软件分析地下连续墙施工全过程的受力,进行结构配筋。采用软件FLAC3D建立基坑及周围土体三维模型,分析基坑开挖对长江大堤变形的影响,分析结果表明,正常施工时,周边建筑及长江大堤的安全可以得到保证。  相似文献   

2.
G3铜陵长江公铁大桥主桥为主跨988 m的斜拉-悬索协作体系桥。江北侧锚碇设计时对沉井基础和地下连续墙基础进行比选,综合考虑开挖范围、工程造价、施工工期等,最终采用基底深置的地下连续墙基础,以下伏基岩弱胶结泥质砂岩作为基础持力层,基础高49.5 m,地下连续墙墙底嵌入中等胶结泥质砂岩,地下连续墙高55.5 m。为减小锚碇基础的开挖量,采用大悬臂外挑锚块结构结合CFG桩复合地基加固技术的新型复合型地下连续墙基础,地下连续墙基础直径缩小至60 m,节省了工程造价。锚碇基础施工中基坑分层开挖,同时进行内衬砌施工。采用PLAIXS 3D软件对锚碇施工阶段及运营阶段进行有限元模拟分析,基坑开挖时地下连续墙结构受力安全,锚碇基础地基承载力、地基沉降结果均满足规范要求。  相似文献   

3.
莫桑比克马普托大桥南锚碇基础采用外径50 m、壁厚1.2 m、深度56 m地下连续墙止水帷幕结构,基坑开挖深度36.3 m。在基坑开挖至27 m深时,出现1处基底突涌事故,导致基坑无法正常开挖施工。分析基坑突涌的形成原因及地下连续墙的封水效果,提出采取坑外降水方式将基坑外部承压水水头控制在开挖面以下的处治方案。通过抽水试验获取场地的水文地质参数,进行深基坑降水设计,并介绍减压井施工工艺及分阶段实施基坑降水情况。马普托大桥南锚碇深基坑降水处治取得了较好的施工效果,保证了工程的顺利完成,相关施工方法和设计方案可为类似工程提供参考。  相似文献   

4.
介绍阳逻长江公路大桥南锚碇基础关键分项工程———圆形地下连续墙、内衬支护和封底的设计施工情况。该分项工程的顺利实施是南锚碇基础成功建设的关键。  相似文献   

5.
武汉鹦鹉洲长江大桥主桥为(200+2×850+200)m三塔悬索桥,该桥北锚碇为"带孔圆环+十字隔墙"重力式沉井基础,沉井外径66m,高43m;1号塔基础为44根φ2.0m钻孔灌注桩,2号塔基础为39根φ2.8m钻孔桩;3号塔基础为20根φ2.8m钻孔桩;南锚碇为"圆形嵌岩地下连续墙+内衬"结构形式,地下连续墙为钢筋混凝土结构,外径68m,壁厚1.5m。根据该桥基础特点,北锚碇沉井采用3轮接高、3次下沉施工;1号塔基础采用筑岛、双排防护桩施工方案;2号塔基础采用先钢围堰后平台的施工方案,钢围堰采用气囊法整体下河;3号塔基础采用先平台后围堰、单排钻孔防护桩施工方案;南锚碇采用液压铣槽机配合冲击钻施工地下连续墙的施工方案。  相似文献   

6.
《公路》2017,(1)
传统的重力式锚碇设计方法不考虑围护结构对基础承载力的贡献,随着施工技术与质量的进步,发挥地连墙围护结构承载力贡献的新型复合基础成为新的研究方向。以虎门二桥工程锚碇基础为背景采用有限元软件模拟了锚碇基础的建造过程,分析了缆力施加前后地下连续墙-锚碇的受力与位移变化,验证了地下连续墙-锚碇复合基础协同承载假定。研究表明:地下连续墙的抗剪强度、地下连续墙与周围土体的摩阻力对锚碇基础水平向抗滑移承载力均有贡献;采用地下连续墙作为基坑围护结构的大跨悬索桥锚碇基坑设计可考虑地下连续墙-锚碇基础的协同承载特性。  相似文献   

7.
《公路》2021,66(8):115-123
传统的重力式锚碇基础设计不考虑围护结构对基础承载力的贡献,而地下连续墙作为围护结构由于自身的结构特性,会在锚碇基础的承载时发挥一定作用。针对虎门二桥东锚碇基础,采用有限元方法分析了施加缆力前后锚碇基础的承载特性,并对地下连续墙在锚碇基础中荷载分担比和锚碇最大水平位移的影响因素进行了研究。结果表明,缆力的施加导致锚碇基础的水平剪力和弯矩均迅速增大并重新分布,地下连续墙始终承担了一定比例的荷载;施加缆力后,锚碇基础和地下连续墙的内力的峰值点或拐点均位于强风化软岩层与中风化软岩层分界面处,地下连续墙嵌入中风化软岩层的部分发挥了较大承载作用;地下连续墙的墙厚对地下连续墙在锚碇基础中的内力比影响最大;岩层弹性模量和地下连续墙的嵌岩深度对锚碇最大水平位移控制作用影响大。  相似文献   

8.
莫桑比克马普托(M aputo )大桥主桥为单跨680 m悬索桥,为确定马普托大桥锚碇基础方案,依据大桥桥位处的地质和水文情况,以及重力式锚碇的结构受力特点,针对锚碇基础基底持力层选择、施工工艺的适用性、技术可行性、经济性、合理性,分别对沉井基础和地下连续墙基础进行研究。研究结果表明:采用地下连续墙基础,施工期间可以避免由于地质情况变化带来的风险,如翻砂、突涌等;可以严格控制锚碇基础施工过程中对周围土体造成的沉降,最大限度地减少对周围铁路正常运营的影响。在确定地下连续墙基础形式后,针对施工过程中的突涌问题,对深地下连续墙和浅地下连续墙+灌浆帷幕+深井抽排水降低水头方案进行研究。研究结果表明:采用深地下连续墙基础,投入设备相对单一,施工工艺、工序简单,施工工效相对较高,施工工期较短,工期可控,应为马普托大桥合理的锚碇基础方案。  相似文献   

9.
某大桥为双塔双跨悬索桥,主跨跨径达到1 688 m,边跨钢箱梁长548 m,其西锚碇采用厚度为1.5 m的地下连续墙作为锚碇基坑开挖的主要围护结构,地下连续墙深入中、微风化泥岩,基坑开挖深度达到22.2 m,采用水泥粉喷桩加固软土。基于该大桥锚碇基坑围护结构施工,探讨超深锚碇基坑围护结构施工关键技术,并给出部分施工建议。  相似文献   

10.
为确保强透水地层条件下基坑施工安全,以至喜长江大桥大江桥为工程背景,对该桥西坝锚碇基础强透水地层施工防渗技术进行研究。锚碇基础采用外径58m、壁厚1.2m的圆形地下连续墙加环形钢筋混凝土内衬支护结构。通过建立二维渗流有限元模型进行计算可知,现场渗流以水平向渗流为主向,高水位下的水力梯度小于中风化岩层临界水力坡降,通过注浆来实现基坑的防渗处理。设置抽水试验确定基坑岩层的渗透系数,设置注浆试验确定注浆孔的布置参数,最后确定基坑的三重防渗设计措施:低压注浆、降水井排水和特殊情况下的施工预案。在三重防渗措施保障下,将基岩平均渗透系数控制在1×10~(~(-5))~10.0×10~(-5) cm/s,锚碇基坑得以顺利安全开挖成型,为大江桥的基础施工提供了安全保障。  相似文献   

11.
《公路》2020,(8)
地下连续墙作为悬索桥锚碇基础的重要围护结构,最早出现在1980年代的日本,刚度大、占地少、施工速度快、防渗性能好、经济效益高等优点使其得到广泛应用。我国自虎门大桥引进并采用地下连续墙作为锚碇围护结构以来,多座越江跨海跨悬索桥采用了地下连续墙围护结构,如阳逻长江大桥的圆形地下连续墙、润扬大桥的矩形地下连续墙、南京长江四桥的八字形地下连续墙、深中通道海中八字形地下连续墙等。随着施工装备及工艺的进步,探讨地下连续墙作为基础的永久受力结构的报道越来越多,日本青森大桥将地下连续墙作为索塔基础使用,虎门二桥坭洲水道桥、棋盘洲长江大桥、清云西江特大桥和深中通道等都在探索地下连续墙作为永久结构的一部分参与锚碇基础的受力,正处在施工过程中的土耳其恰纳卡莱大桥采用地下连续墙作为壁板桩参与锚碇基础的永久受力。正在进行前期研究的广州市莲花山过江通道,桥梁方案之一为主跨2 100m的双向12车道悬索桥,锚碇基础的埋置深度与尺寸规模的降低,对工程具有重要意义,采用地下连续墙参与永久结构受力也是重要的研究方向之一。  相似文献   

12.
依据对国内外悬索桥锚碇基础的充分分析,结合锚碇区的工程地质和水文条件,提出设置沉箱基础、筑岛地下连续墙基础、沉井钻孔桩复合桩基础等3种方案,并对3种方案进行综合比较,选择了沉井钻孔桩复合锚碇基础形式。  相似文献   

13.
深中通道伶仃洋大桥为主跨1 666m的全飘浮钢箱梁悬索桥,该桥东锚碇为重力式锚碇,采用8字形地下连续墙基础作为基坑开挖施工的支护结构。东锚碇基坑支护结构采用海中筑岛围堰的总体方案施工。东锚碇基坑支护结构施工前,在海中首先采用锁扣钢管桩及工字型钢板桩组合的围堰方案筑岛形成施工陆域,结合河床表层清淤、砂石垫层换填、插打塑料排水板等措施对筑岛陆域进行地基处理;待筑岛地基沉降稳定后,地下连续墙采用"旋挖引孔+铣槽"的复合成槽工艺施工;地下连续墙施工后,基坑采用岛式法分12区(平面)、14层(竖向)进行阶梯形开挖,同时采用同步降排水措施(设6个降水井、6个集水井)进行基坑开挖施工。  相似文献   

14.
珠江黄埔大桥南汊悬索桥北锚碇位于珠江中心岛上,其基础设计采用圆形地下连续墙方案。地下水位受潮汐影响,对地下连续墙施工影响较大,如何优化各施工环节、控制成槽质量是施工成功的关键。介绍黄埔大桥锚碇基础地下连续墙施工技术。  相似文献   

15.
赣州大桥主桥为双塔地锚式悬索桥,其东锚碇基础支护结构为圆形地下连续墙,分为I期、Ⅱ期两种槽段,采用“冲抓法”成槽.该文结合施工实际,对东锚碇基础地下连续墙的施工工艺进行介绍和分析,并从技术和管理角度阐述其质量控制措施.  相似文献   

16.
武汉杨泗港长江大桥为主跨1 700m的单跨双层悬索桥,武昌侧锚碇为重力式锚碇(由地下连续墙、帽梁、内衬、底板及填芯混凝土组成),锚碇开挖直径98m、深39m,位于长江大堤南岸附近,地质条件较差。根据锚碇结构特点和地质条件,地下连续墙共划分68个槽段,Ⅰ、Ⅱ期槽段各34个,间隔分布,分别采用成槽机和铣槽机施工,接头形式为铣接头;基坑开挖前,采用地下连续墙墙底注浆、接缝处旋喷、抽水井等止排水措施,深基坑开挖采取逆作法施工,边开挖取土方边施工内衬,采用履带吊机将土方从基坑内吊出,帽梁和内衬分8段施工;锚碇底板、填芯大体积混凝土分层分块施工,采用冷却循环水、低水泥掺量的混凝土配合比等温控措施,保障了锚碇施工质量。  相似文献   

17.
地下连续墙作为锚碇基础开挖的重要防护结构,施工质量及工期控制对整个项目影响极大,尤其在非洲等欠发达地区,为保证莫桑比克马普托大桥北锚碇地下连续墙施工顺利进行,展开了试验槽段的研究,论述了试验槽的实施目的、实施过程以及对地下连续墙正式槽段施工的指导意义。  相似文献   

18.
南进江 《公路》2023,(5):145-150
张靖皋长江大桥北航道桥南锚碇采用直径为90 m的圆形地下连续墙锚碇基础,基坑开挖深度为21.3 m,基础底板下28 m深度范围内首次采用超高置换率的旋喷桩进行深层地基加固,以提升地基承载力、提高基底摩擦系数和降低承压水突涌风险。结合锚碇基础的建设特点,对深层地基加固质量控制、基坑渗水和突涌防治、返浆处理再利用以及锚体混凝土防渗控裂等施工重难点进行了分析,并提出了相应的施工控制措施,可为类似项目的实施提供借鉴。  相似文献   

19.
中跨为1990M的日本明石海峡大桥,不久将成为世界上跨径最大的悬索桥。文中着重介绍刚刚完工的巨型西端锚碇(1A号)基础的施工;该锚碇采用直径为85M,深75.5M的大型圆柱基础,采用厚2.2的地下混凝土连续墙施工,综合应用了水下不离析混凝土,低发热水泥,碾压混凝土,大型钻机及施工监测等多种新技术。  相似文献   

20.
武汉阳逻长江大桥锚碇设计   总被引:1,自引:0,他引:1  
刘明虎  徐国平  刘化图 《公路》2004,(12):39-47
武汉阳逻长江大桥主桥为主跨1280m悬索桥,北锚碇采用放坡大开挖深埋扩大基础实腹式锚体重力式锚;南锚碇采用支护开挖深埋圆形扩大基础框架式锚体重力式锚,其基坑工程采用圆形地下连续墙加内衬的支护结构型式;在国内首次采用“无粘结可更换”预应力锚固系统。本文概述了锚碇的总体构造、基坑工程、锚体及锚固系统的结构设计及技术特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号