首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
以某特大跨径桁架加劲梁悬索桥为例,利用节段模型风洞试验,探讨研究桥面板中央开槽孔、加裙板、气动翼扳等各种气动控制措施对颤振临界风速的影响。试验结果表明,桥面板中央开槽、设置裙板、气动翼板都能够使桁架加劲梁桥颤振稳定性得到改善,但是都不能使各个攻角下的颤振临界风速都有所提高。气动翼板和桥面板中央开槽组合气动措施,且气动翼板的安装位置在桁架加劲梁弦杆,是最优化气动措施组合,可为类似大跨度桁架加劲梁桥抗风设计做参考。  相似文献   

2.
通过风洞试验和数值模拟获得主动气动翼板优化控制参数需要庞大的试验和计算成本,并且难以得到最优的翼板控制参数。基于流线箱梁主动气动翼板颤振控制的风洞试验数据,以翼板与主梁扭转运动相位差为输入,颤振临界风速变化比例为输出建立BP人工神经网络模型,对神经网络进行训练得到了主动气动翼板颤振临界风速预测关系。结果表明:预测输出值和实际值之间误差为5%左右,相关系数为0.965;使用训练得到的人工神经网络模型以1°增量对0°~360°范围内的气动翼板相位差进行遍历计算,得到了两侧翼板相位差对主梁-翼板系统颤振性能的影响规律,当迎风侧翼板相位差位于180°~360°内时系统颤振性能得以提高,最优参数组合为迎风翼板相位差231°,背风侧翼板相位差63°;利用获得的最优气动翼板相位差参数组合,建立了主梁-翼板系统流固耦合模型,对试验和神经网络模型的最优参数的颤振控制效果进行验证,证明了神经网络对颤振控制预测的准确性。提出的通过数据量较少的试验数据训练构建人工神经网络模型,构建预测主梁-翼板系统颤振性能的理论框架,显著改善了颤振控制效果,实现了高精度主动气动翼板颤振的优化控制。  相似文献   

3.
气动翼板抑制悬索桥颤振的物理机理   总被引:1,自引:0,他引:1  
王秀伟  刘高 《公路》2005,(6):46-50
从能量的角度研究气动翼板控制悬索桥颤振的物理机理。基于弯扭二模态耦合颤振系统,分别推导了气流由主梁和一对气动翼板输入系统的能量以及结构阻尼耗散能量的表达式。以某跨海方案桥为例进行了研究,结果表明:气动翼板能有效耗散气流由主梁输入系统的能量,桥梁颤振临界风速提高达30%。  相似文献   

4.
为了揭示主梁基本气动外形对悬索桥颤振性能的影响,以一座大跨悬索桥为例,分别选取流线型箱型、边箱型与分离式双箱型3种典型断面作为大桥主梁的基本气动外形。采用强迫振动法并基于CFD数值模拟获取各断面的气动参数,并采用阶跃函数法建立主梁的气动自激力时域模型;然后利用ANSYS平台进行全桥时域颤振有限元分析,得到各断面对应的颤振临界风速与颤振频率。结果表明:分离式双箱断面的颤振性能最佳,其颤振临界风速达到109.6 m/s,远高于其他2种断面;流线型断面与边箱型断面的颤振临界风速分别为89.4 m/s与86.9 m/s,两者的颤振性能相差不大;由频谱及相位分析可知,3种断面的颤振频率介于竖弯与扭转基频之间,颤振形式表现为不同程度的扭弯耦合振动。  相似文献   

5.
某山区钢-混组合窄梁悬索桥采用水平导流板对其颤振、驰振性能进行了优化,为了解该桥各类风致静、动力效应,以确保施工安全性和行车安全性,进一步研究优化后加劲梁在平均风作用下的静风稳定性和在脉动风作用下的抖振性能。基于全桥有限元模型结构自振特性分析结果及节段模型风洞试验测得的加劲梁断面静风三分力系数和颤振导数,采用三维非线性数值模拟方法对优化前、后加劲梁的静风临界发散风速进行求解,并与基于小变形假定的二维线性理论分析方法计算结果进行对比;采用抖振响应频域分析方法,结合规范中的桥址区风场特性,计算脉动风作用下的加劲梁抖振位移及内力。结果表明:该桥设置水平导流板前、后,加劲梁静风稳定性均满足规范要求且性能良好;设置水平导流板后,加劲梁扭转方向抖振位移有一定程度增大,同时,加劲梁竖向剪力最大值出现位置发生改变,跨中断面扭矩显著增大,该气动措施对抖振性能的提升较为有限。  相似文献   

6.
怀来官厅水库特大桥主桥为主跨720m的悬索桥,加劲梁采用钢-混凝土组合梁,采用现场节段吊装法施工。为指导该桥加劲梁吊装施工,采用ANSYS软件建立全桥及施工阶段的有限元模型,分析加劲梁整体式吊装和分离式吊装2种方案下结构的颤振稳定性及动力特性,并提出了抑振措施。结果表明:加劲梁整体式吊装方案比分离式吊装方案具有更好的动力特性和颤振稳定性,推荐采用整体式吊装方案施工;2种方案下结构的颤振临界风速小于相应的颤振检验风速,存在发生颤振的可能。因此,提出了采取增设竖向交叉索的临时加劲措施。通过抑振效果分析可知,该措施可以增加结构的扭转基频,显著提高施工阶段的结构颤振稳定性。  相似文献   

7.
颤振是大跨度桥梁抗风设计中的关键问题。通过对颤振进行主动控制影响桥梁的气动形态从而改变作用于结构上的气动力,达到抑制颤振的目的,对于大跨度桥梁的颤振控制是行之有效的手段。但是桥梁的颤振主动控制涉及到气动力的获取和控制率的优化问题,迄今未能完全解决。结合桥梁主动控制前期研究并借鉴航空领域中的颤振主动控制原理,研究了基于主动翼板的桥梁颤振控制问题;基于机翼-副翼理论和颤振导数形式给出了流线箱梁-主动翼板的自激气动力表达式,同时考虑主梁钝体特性和其与主动翼板气动干扰效应;由流线箱梁-主动翼板的气动力表达式和试验控制的诉求,采用次最优控制理论,构造基于少数状态变量的桥梁颤振系统反馈控制方程。根据流线箱梁-主动翼板气动力表达式和次最优控制理论,针对平板-翼板和流线箱梁-翼板系统,首先由数值风洞获取系统的气动力,并采用自编程序解算次最优颤振控制律;最后通过计算流体动力学(CFD)流固耦合数值仿真对控制效果进行检验。结果表明:对于平板-翼板系统,基于流线箱梁-主动翼板气动力表达式而获取的颤振导数与理论解吻合,验证了该气动力表达式的准确性,可用于后续控制分析;结合系统的气动力,次最优控制率在超越无控制结构的临界风速下,能够快速抑振。据此,主梁-翼板系统的次最优控制可面向实际抑制桥梁颤振,并提高颤振临界风速。  相似文献   

8.
仙新路过江通道主桥为跨径布置(580+1 760+580) m的悬索桥,桥塔高267 m,加劲梁采用整体式闭口钢箱梁。为研究该桥运营阶段抗风性能,通过1∶50缩尺比加劲梁节段模型风洞试验分析大桥的驰振性能及提高大桥颤振性能的气动措施;通过1∶140缩尺比全桥气弹模型风洞试验,验证大桥的颤振、静风稳定性,并研究桥梁的抖振响应。结果表明:该桥在常遇风攻角范围内(-3°~+3°)不具备发生驰振的必要条件,加劲梁断面具有良好的驰振稳定性;加劲梁原始断面的颤振稳定性不满足规范要求,在中央防撞护栏间增设0.67 m高中央稳定板后,颤振临界风速高于颤振检验风速并具有一定的富余量;采用优化措施后,大桥具备良好的静风与颤振稳定性,加劲梁、桥塔在设计风速下各测点抖振响应值较小且均未发生不稳定振动或发散性振动。  相似文献   

9.
泰州长江公路大桥三塔悬索桥的颤振稳定性   总被引:1,自引:0,他引:1  
为研究三塔悬索桥的动力特性及颤振稳定性,以泰州长江公路大桥主桥为背景,开展数值分析和风洞试验。采用有限元软件ANSYS建立该桥模型,分析中塔对结构振型的影响,分析结果表明:中塔的设置使影响结构颤振稳定性的关键模态的频率降低很多。对节段模型进行颤振稳定性风洞试验,试验结果表明:将检修车轨道移到采用尖角型风嘴的上斜板位置后,模型在+3°风攻角的颤振临界风速达到63.2 m/s。利用三维耦合颤振分析方法对该桥成桥状态+3°风攻角下桥梁结构的颤振稳定性进行分析,分析结果表明:结构颤振时第15阶振型占绝大部分能量,说明颤振主要以扭转形态为主。  相似文献   

10.
为了解大跨度钢-混凝土结合梁悬索桥的抗风性能,以庙嘴长江大桥大江桥(主跨838m的悬索桥,加劲梁为钢-混凝土结合梁)为背景进行颤振稳定性研究。对该桥进行1∶50的缩尺节段模型颤振稳定性试验,根据试验结果进行气动优化措施分析,采取了在加劲梁断面增加2道1/4下稳定板的措施;针对优化后的加劲梁,进行1∶118的全桥缩尺模型风洞试验,并采用有限元软件ANSYS建立全桥三维有限元模型,进行了施工状态及成桥状态下的颤振分析。结果表明:在加劲梁断面增加2道1/4下稳定板后,提高了桥梁的颤振稳定性能;在-3°、0°和+3°风攻角作用下,该桥在施工状态和成桥状态下的颤振临界风速均大于检验风速,颤振稳定性能满足规范要求,较好地改善了桥梁的抗风性能。  相似文献   

11.
随着桥梁设计跨度增大,结构对风荷载作用极为敏感。采用CFD数值模拟方法研究桃花峪黄河大桥主梁断面颤振问题,根据分状态强迫振动法给出了颤振导数识别方法建立了数值计算模型,经计算得出结论:在+5°风攻角下造成竖向振幅为0.03 m所需风速约为13.2 m/s,在+3°风攻角下造成相同竖向振幅所需风速约为14.2 m/s;在+5°风攻角下造成扭转振幅为6°所需风速约为13.1 m/s,在+3°风攻角下造成相同扭转振幅为6°所需风速约为14.0 m/s,风攻角是颤振重要因素;经模拟气动流场得到主梁结构在0°、+3°及-3°攻角下颤振临界状态涡量变化情况可知随着风速增大涡量图为一对细长互不干涉正负涡量逐步增大至正负交替漩涡,在尾流处耦合成2个相互交替大漩涡。  相似文献   

12.
随着桥梁跨径的增加,其结构对风的敏感性增强,颤振稳定性往往成为桥梁设计中首要考虑的因素。桁架主梁构造复杂,也是抗风数值计算的难点。通过对FLUENT二次开发,建立了基于几何三维的竖弯和扭转流固耦合数值仿真计算模型,通过对黄冈公铁两用长江大桥进行颤振数值仿真计算,利用不同风速下主梁位移时程曲线判断颤振临界风速,并和节段模型风洞试验结果进行比较。计算表明,数值仿真计算结果和风洞试验结果基本吻合,说明本文流固耦合计算方法的有效性。  相似文献   

13.
某三线合一(1条高速公路线、1条城市主干道线及1条双线铁路线)公铁两用悬索桥主桥跨径为(52+800+800+52)m,加劲梁采用钢箱-桁架组合形式,其断面形式新颖,为研究该桥颤振稳定性能,确保桥梁的抗风安全,对主桁架梁节段进行1∶46.3的缩尺模型风洞试验,并探讨了风嘴以及栏杆位置、高度、透风率等各种气动措施对颤振临界风速的影响。结果表明:该桥在-3°攻角下,颤振临界风速小于相应的颤振检验风速,存在发生颤振的可能性;增设风嘴能提高负攻角下的颤振临界风速,但正攻角下颤振临界风速会有所降低;合理地改变上、下游栏杆位置、高度、透风率等组合措施,能使桥梁在各攻角情况下的颤振临界风速满足要求。  相似文献   

14.
张欣  刘勇  李云华 《公路工程》2020,(1):184-189
以株洲枫溪大桥为工程背景,采用有限元计算和节段模型试验相结合的方法,研究大跨度自锚式悬索桥STC组合桥面钢箱加劲梁的抗风性能。研究结果表明:钢-STC组合桥面箱形加劲梁结构在-3°、0°及+3°的3种风攻角下,颤振临界风速均远高于桥位处检验风速,设计方案满足颤振稳定性要求,且有较大富余度。成桥状态下的原型断面在+3°攻角下出现了11.1~16.7 m/s与22.7~33.4 m/s两个竖弯涡振区,其中在第二个竖弯涡振区,其峰值振幅0.188 m超过规范允许值。通过对截面进行局部优化后,涡振均在规范允许值以内。节段模型测力风洞试验基于风攻角为-12°至12°范围内变化,研究了加劲梁断面的静力三分力系数的变化规律。大跨度自锚式悬索桥的钢-STC组合桥面宽幅箱形加劲梁的抗风性能试验研究为类似桥梁的设计提供依据和参考。  相似文献   

15.
为改善大跨度跨海连岛工程中悬索桥在设计风速下的气动稳定性,针对单纯采用传统被动气动措施有时难以满足桥梁抗风需求的问题,探讨了主动控制面在悬索桥颤振控制中的应用.针对传统主动控制面理论模型中假定迎风侧、背风侧控制面只能同相或反相于主梁扭转运动的问题,将控制面扭转运动相位、振幅引入主动控制面理论计算模型中,以1座主跨3 000 m的悬索桥为例,分析了控制面扭转运动相位、振幅对其控制效果和鲁棒性的影响,并探讨了控制面的抑振机理.研究结果表明:迎风侧控制面只有在领先于加劲梁扭转运动超过180°后才会起到明显的控制效果;控制面扭转运动最优相位角不依赖于其扭转运动振幅,且有较好的鲁棒性;控制面通过主动调整控制面的扭转运动相位从而改变作用在其上的自激升力方向,产生反向于加劲梁上自激升力矩的力偶,最终起到颤振控制的效果.  相似文献   

16.
《公路》2017,(1)
为了寻求Maputo大桥较佳气动性能的主梁,针对设计提出的三种方案,采用风洞试验和数值计算相结合的方法,获得三种方案的静风失稳临界风速以及颤振临界风速,对比分析了各主梁的静动力稳定性能。静风稳定性计算结果表明,三种主梁的静风失稳形态均表现为弯扭空间耦合,其中,钢箱叠合梁静风稳定性最优,静风响应也较小;颤振试验结果表明,三种主梁的颤振稳定性均不满足要求,钢箱叠合梁颤振稳定性相对更好;通过在钢箱叠合梁上设置水平导流板,可使其满足颤振要求。  相似文献   

17.
扁平箱梁已广泛应用于大跨度桥梁的主梁设计中,其颤振性能通常会借助物理和数值风洞的方法获得,测试周期长、费用高。尽管采用颤振计算公式可以简便计算扁平箱梁的颤振临界风速,但当前公式中未考虑扁平箱梁气动外形和来流攻角的具体影响,计算误差较大,无法用于实际工程设计。为了提升颤振计算公式中联合折减系数的准确度,利用节段模型风洞试验开展气动外形和风攻角对扁平箱梁颤振性能影响的研究。在分析各种气动构件和外形参数对扁平箱梁颤振性能的影响后,确定以斜腹板倾角和宽高比为气动外形变量,设计制作3组12个节段模型,分别在5个风攻角下测试了有栏杆扁平箱梁的颤振性能。在此基础上,根据节段模型风洞试验获得的颤振临界风速,结合弯扭耦合颤振闭合解计算公式,量化了气动外形和风攻角变化对扁平箱梁颤振的影响,给出不同条件下扁平箱梁颤振计算公式中的联合折减系数。最后,基于实际桥梁的颤振临界风速算例,验证利用联合折减系数计算颤振临界风速的准确性和适用性。研究结果表明:在0°风攻角和正风攻角下,当扁平箱梁的宽高比分别为11,9时,斜腹板倾角的减小有利于颤振临界风速提高,宽高比为7时,斜腹板倾角对颤振临界风速没有影响;在负风攻角下,3组宽高比模型斜腹板倾角的减小均会引起扁平箱梁颤振临界风速的降低;联合折减系数与扁平箱梁截面的颤振性能正相关,可直接反映其颤振性能,相对于目前《公路桥梁抗风设计规范》中扁平箱梁颤振临界风速计算时的固定折减系数,该系数能够具体和准确反映气动外形和风攻角对扁平箱梁颤振的影响,可以结合颤振计算公式快速、准确地计算出大跨度桥梁颤振临界风速。  相似文献   

18.
通过对计算流体力学商用软件FLUENT二次开发,建立了二维弯曲和扭转流固耦合数值仿真计算模型,研究6种钢箱梁桥梁方案的颤振稳定性:①整体钢箱梁;②~④不同中央开槽率的钢箱梁(开槽率分别为20%,40%和100%);⑤中央开槽与中央稳定板组合钢箱梁;⑥中央开槽与中央稳定板和水平稳定板组合钢箱梁。数值计算结果表明,对于颤振稳定性,中央开槽钢箱梁优于整体式钢箱梁;在假定主梁截面特性及桥梁自振频率不变的条件下,适当的开槽率可以使钢箱梁颤振临界风速达到最高;中央开槽与中央稳定板和水平稳定板组合钢箱梁可进一步提高桥梁颤振临界风速。数值仿真计算结果和风洞试验结果基本吻合。  相似文献   

19.
为了研究风-车-桥耦合系统中车-桥系统的振动特性及车辆行车安全特性,得到车辆在大跨度桥梁上行驶时车辆的安全行驶临界风速,对车辆通过大跨斜拉桥时车辆的气动特性、车-桥系统的振动特性及车辆的行车安全特性进行研究。研究风荷载作用下车辆在大跨度桥上行驶时车辆的行车安全临界风速,分析车辆行驶速度、路面状况及风偏角对车辆行驶安全临界风速的影响。车-桥系统的耦合振动会导致车-桥系统周围风场的特性发生变化,风场的变化会导致下一时刻车-桥系统的受力状态发生改变。考虑车辆运动及车-桥系统的振动与车-桥周围风场的相互影响,基于双向流固耦合数值模拟,建立风-汽车-桥梁空间耦合振动数值分析模型。通过风-车-桥耦合系统三维数值分析,得到了风荷载作用下车辆在大跨度桥上行驶时不同状况下车辆的倾覆及侧滑临界风速。结果表明:基于双向流固耦合数值分析能够较精确地模拟风-车-桥耦合振动系统;风荷载作用下车辆在桥上行驶时,车辆的振动特性主要由汽车-桥梁系统决定,车-桥系统的振动特性受自然风荷载影响;侧向风荷载作用下车辆的倾覆力矩系数及侧向力系数并不一定为最大值,车辆在大跨径桥上行驶受侧向风荷载作用并不一定为行车安全分析的最不利状况。  相似文献   

20.
商合杭铁路芜湖长江公铁大桥主桥为主跨588m的钢箱桁组合梁斜拉桥。为确定该桥在施工期和运营期的抗风安全性,对其开展抗风性能研究。分别进行主梁节段模型、桥塔气弹模型、全桥气弹模型及并列拉索风洞试验,研究该桥在成桥状态及最不利施工状态的风致响应。结果表明:施工和成桥状态下,该桥主梁的颤振临界风速均远大于颤振检验风速,颤振稳定性较好;不同风速下均未观测到明显涡振,涡振性能满足规范要求;设计风速内,不同来流偏角下桥塔均未发生驰振及影响施工的大幅涡振,动力稳定性良好;实桥风速达到84.0m/s时主梁仍未发生颤振、横向屈曲、扭转发散等静力失稳现象,也未发现影响施工的涡振和大幅抖振;最不利工况下,下游拉索在风速37.4m/s时即出现一阶大幅尾流驰振,设置刚性连接杆可以有效抑制尾流驰振现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号