首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正2016年4月23日,武汉杨泗港长江大桥工地1号塔沉井空气幕助下沉用时42 min,沉井下沉1.47m。主跨1 700m的武汉杨泗港长江大桥是世界上跨度最大的双层悬索桥。大桥的2个桥塔基础均为沉井基础,沉井平面尺寸长77.2 m,宽40 m,相当于8个篮球场的面积大小。位于汉阳岸的1号塔沉井高38m,其中底端约6m的高度要深入到硬塑状的黏土层中。  相似文献   

2.
2016年h1月23日,武汉杨泗港长江大桥工地1号塔沉井空气幕助下沉用时42min,沉井下沉1.47m。  相似文献   

3.
<正>2015年9月6日,由中铁大桥局承建的武汉杨泗港长江大桥1号塔沉井基础吸泥平台搭设完成,开始第二次下沉(见图1)。1号塔沉井靠近汉阳岸,总高38 m,分3次下沉。第二次下沉10m,采取不排水法下沉。为保证沉井内吸泥均匀,确保均匀下沉,采用贝雷梁搭设吸泥平台,同时配备十余台15t小型门吊,利用门吊  相似文献   

4.
<正>2015年7月10日凌晨5时,经过70多个小时的不断调试,杨泗港长江大桥2号桥塔沉井精确着床(见图1)。武汉杨泗港长江大桥2号桥塔位于靠近武昌岸的水中,沉井平面尺寸为77.2m×40m,相当于8个标准篮球场的面积大小,总高50m,相当于17层楼高,其中底节28m为钢壳沉井。由于2号沉井所处水域流水压力大,水流方向与横桥向不平行,调整  相似文献   

5.
正2015年12月21日,武汉杨泗港长江大桥2号塔沉井完成第9次混凝土接高(见图1),标志着2号塔沉井接高工作全部完成。武汉杨泗港长江大桥2号塔位于武昌岸,沉井平面长77.2m、宽40m,总高50m,其中底节23m高的钢壳在距桥位上游约20km的金口工厂制造,  相似文献   

6.
<正>日前,由中铁大桥局承建的武汉杨泗港长江大桥1号塔沉井底节8m高钢壳完成最后一个节段的吊装,顺利实现合龙。2号塔沉井底节23m的陆地拼装部分已完成,正在做下水前的最后准备(见图1)。大桥1号塔沉井在汉阳岸,总高38m,为陆地沉井,在现场拼装完成后采取三次接高三次下沉的施工方案。2号塔沉井在靠近武昌岸的水中,总高50m,其中23m高在距桥位上游约20km的工厂制造,拼装完成后,采用气囊法转向整体下水,下水  相似文献   

7.
正2016年11月9日,经过近25h昼夜奋战,武汉杨泗港长江大桥2号桥塔沉井最后一次封底顺利完成(见图1)。至此,2号桥塔沉井完成全部封底施工,并坐稳根基,即将转入承台施工。2号桥塔沉井基础位于武昌侧水中,工程量大,技术要求高,施工难度极大,是全桥总工期的控制  相似文献   

8.
武汉杨泗港长江大桥主桥为主跨1 700m的双层钢桁梁悬索桥,该桥2号墩采用沉井基础,沉井高50m,其中上部22m为钢筋混凝土结构,下部28m为钢壳混凝土结构(分为2节,高度分别为23m和5m,总重约4 850t)。23m高的底节钢沉井在工厂加工后,采用气囊法下水,下水时将下河托架和助浮结构进行一体化设计,利用气囊调整钢沉井角度,以实现钢沉井主动转向;采取在钢沉井底部设置纵、横梁及底托板,封闭12个井孔的助浮措施,以减小沉井浮运吃水深度。底节钢沉井采用以顶推为主、帮拖为辅的方式浮运至墩位处抛锚,采用无导向船重锚定位系统定位;定位后接高余下5m高的钢沉井,接高后注水下沉钢沉井,并浇筑钢壳混凝土,将钢沉井下沉至设计高程,完成钢沉井施工。  相似文献   

9.
正2018年12月29日,武汉杨泗港长江大桥主跨钢梁合龙(见图1),标志着世界最大跨度双层公路悬索桥主体工程完工。杨泗港大桥所用的标准梁段长36m,宽32.5m,高10m,每节段重达1 050t。全桥共49个节段,用船舶运输方式将钢桁梁节段运输至施工现场,利用2台起重能力达900t的缆载吊机,采用4点起  相似文献   

10.
正2018年8月24日,随着最后一根索股精准就位,世界最大跨度双层公路悬索桥——武汉杨泗港长江大桥主缆索股架设全部完成(见图1),标志着大桥上部结构施工最为复杂、最为关键的工序取得圆满胜利,为下阶段钢桁梁吊装打下坚实基础。  相似文献   

11.
武汉杨泗港长江大桥主桥为主跨1 700m的单跨双层钢桁梁悬索桥。该桥2个桥塔均采用沉井基础,沉井下部为钢壳混凝土结构,上部为钢筋混凝土结构;锚碇采用外径98m、壁厚1.5m的圆形地下连续墙基础;桥塔为钢筋混凝土门式结构,1号和2号塔高分别为231.9m和243.9m,采用C60高性能混凝土浇筑;主缆采用直径6.2mm、标准抗拉强度1 960MPa的锌铝合金镀层高强钢丝;加劲梁采用华伦式桁架全焊接结构。在该桥施工中,沉井隔舱区域硬塑黏土层采用搅吸机+高压射水取土的工艺施工,刃脚盲区采用爆破+斜向弯头吸泥机取土的工艺施工;地下连续墙采用液压成槽机和双轮铣槽机进行槽段成槽施工,内衬及填芯混凝土采用逆作法施工;桥塔采用液压爬模施工,通过优化混凝土配合比、选择高压输送泵将C60混凝土一泵到顶;主缆钢丝为国产新材料,按4个阶段组织生产;主缆采用索股混编,PPWS法架设,利用双线往复式牵引系统进行索股牵引;加劲梁采用整体节段制造、吊装技术施工,钢梁节段采用缆载吊机从跨中向桥塔方向逐段吊装。  相似文献   

12.
武汉杨泗港长江大桥为主跨1 700 m的单跨双层钢桁梁悬索桥,猫道采用三跨连续式无抗风缆猫道结构体系,猫道中跨跨度1 700 m.猫道主要结构包括猫道承重索、门架支承索、扶手索、猫道面层、猫道门架系统、横向天桥、猫道索转向系统以及锚固调节系统等.猫道面宽4.0m;猫道承重索由10根φ56 mm钢丝绳组成,通过精轧螺纹钢...  相似文献   

13.
《城市道桥与防洪》2014,(9):239-239
杨泗港长江大桥位于白沙洲大桥和在建的鹦鹉洲大桥之间,起于汉阳国博立交,从汉阳汉新大道跨鹦鹉大道、滨江大道跨越长江,武昌岸跨过八铺街堤、武金堤后,止于八坦立交,连接武汉三镇中的汉阳区和武昌区,总长约4.3km,总投资达78.91亿元。  相似文献   

14.
武汉杨泗港长江大桥主桥为主跨1 700 m的单跨双层公路悬索桥,加劲梁采用全焊接钢桁梁结构,共49个节段,其中标准梁段长36 m、宽32.5 m、桁高10 m,重约1 010 t。加劲梁采用大节段制造、运输和架设总体思路施工。利用900 t液压提升式缆载吊机由跨中向两侧架设加劲梁,其中,无吊索区2个梁段采用单台缆载吊机荡移法架设,其余47个梁段均采用2台缆载吊机抬吊架设。加劲梁架设时,先利用2台缆载吊机架设跨中区域7个梁段,再利用4台缆载吊机对称架设剩余42个梁段,最后在塔柱两侧采用预偏法合龙。在加劲梁架设过程中,采用了节段间临时连接+部分配重的方案施工;并根据加劲梁架设顺序对航道布置进行了2个阶段的动态调整。  相似文献   

15.
在过江通道资源紧张而交通量又过快增长的沿江大城市,采用双层公路桥梁建设方式可以有效缓解交通问题,但双层公路大桥势必会带来更复杂的交通组织,更高要求的交通疏解设计.该文以武汉杨泗港长江大桥工程为例,通过采取合理布局两岸疏解立交匝道、完善配套道路、重视人行和非机动车慢行系统、因地制宜等对策措施,较好地满足了大桥交通疏解要求...  相似文献   

16.
武汉天兴洲公铁两用长江大桥斜拉桥主塔施工技术   总被引:6,自引:3,他引:3  
武汉天兴洲公铁两用长江大桥主塔具有规模宏大、钢筋与预应力结构密集、混凝土耐久性要求高等特点,在施工中应用了多项新技术、新方案,确保了施工质量、安全和进度指标.介绍主塔的施工技术.  相似文献   

17.
武汉杨泗港长江大桥为主跨1 700m的单跨双层悬索桥,武昌侧锚碇为重力式锚碇(由地下连续墙、帽梁、内衬、底板及填芯混凝土组成),锚碇开挖直径98m、深39m,位于长江大堤南岸附近,地质条件较差。根据锚碇结构特点和地质条件,地下连续墙共划分68个槽段,Ⅰ、Ⅱ期槽段各34个,间隔分布,分别采用成槽机和铣槽机施工,接头形式为铣接头;基坑开挖前,采用地下连续墙墙底注浆、接缝处旋喷、抽水井等止排水措施,深基坑开挖采取逆作法施工,边开挖取土方边施工内衬,采用履带吊机将土方从基坑内吊出,帽梁和内衬分8段施工;锚碇底板、填芯大体积混凝土分层分块施工,采用冷却循环水、低水泥掺量的混凝土配合比等温控措施,保障了锚碇施工质量。  相似文献   

18.
正近日武汉第九座长江大桥——沌口长江公路大桥主塔成功封顶。沌口长江公路大桥于2014年10月正式开工建设,工程概算总投资52.25亿,将于2017年底建成。沌口长江公路大桥位于武汉白沙洲长江大桥和军山长江大桥之间,起点接武汉市四环线西段,在武汉市经济技术开发区汉洪高速设互通衔接,过长江,经洪山区青菱乡,在江夏区青郑高速设互通衔接,终点接四环线南段。该桥是武汉四环线的关键控制性工程。  相似文献   

19.
武汉杨泗港长江大桥为主跨1700 m单跨双层钢桁梁悬索桥,猫道采用无抗风缆三跨连续式结构.大桥跨度大、施工环境复杂,采用往复式猫道对拉牵引系统,包括35 t主、副卷扬机以及牵引索、转向滑车;2个锚碇处各布置2台35 t主牵引卷扬机,桥塔和锚碇支墩门架处布置若干辅助小型卷扬机.通过方案比选,第1根先导索(下游侧)采用大型...  相似文献   

20.
武汉杨泗港长江大桥主桥为主跨1 700 m的悬索桥,加劲梁主桁架为华伦式桁架结构,上、下层行车道桥面系均采用正交异性钢桥面板。为了解大桥静力及抗风安全性,采用BNLAS软件建立主桥整体空间杆系有限元模型进行理论计算,制作1∶52.67主桁梁节段模型和1∶120全桥气动弹性模型,进行风洞试验,分析静动力特性以及抗风措施对动力特性的影响。结果表明:大桥恒载与活载的作用效应之比约为9∶1,加劲梁竖向、横向挠跨比均远小于规范允许值,大桥静力特性满足要求;主梁颤振失稳形式为软颤振,主梁上层桥面外侧挑臂加宽90 cm后,大桥的静风稳定性和气动稳定性均满足要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号