首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 368 毫秒
1.
为研究公铁两用斜拉桥的力学性能,以沪通长江大桥主航道桥[(140+462+1 092+462+140)m双塔斜拉桥]为对象,采用空间板梁单元法建立全桥有限元模型,对边跨支点数量、边中跨比、主梁高跨比和宽跨比、塔梁高跨比等设计参数进行分析。结果表明:边跨设置辅助墩可改善结构受力、提高桥梁整体刚度;边中跨比增大使结构总体刚度减小,活载塔底顺桥向弯矩增大;主梁高度增大可提高结构整体刚度,但提高幅度有限,同时对恒、活载拉索应力的影响也较小;主梁宽度增大使横弯基频增大、竖弯基频减小,扭频先减小后增大而后趋于平稳,结构颤振稳定性提高;塔高增大使结构竖向刚度增大而索塔纵向刚度降低,活载塔底顺桥向弯矩减小,恒、活载拉索应力减小。  相似文献   

2.
新建安庆至九江铁路鳊鱼洲长江大桥采用两线350km/h高铁及两线客货共线Ⅰ级标准,主航道桥主跨为672m。四线铁路桥常见桥型有悬索桥和斜拉桥,鳊鱼洲属于行洪区,不宜设置体量较大的锚碇,因此不采用悬索桥方案。对斜拉桥方案进行了研究。国内外大跨度公铁两用斜拉桥主梁以桁式主梁居多;该桥为单建铁路,边跨在陆地及洲上,如采用钢桁梁斜拉桥,经济性较差,而且景观效果与周围环境不协调。在钢箱混合梁斜拉桥方案中,通过设置跨度较小的混凝土边跨、增加钢箱梁部分恒载、主跨跨中区段设置交叉索等措施,弥补了钢箱梁刚度小的缺点,最终选定(2×50+224+672+174+3×50)m钢箱混合梁交叉索斜拉桥为推荐方案。  相似文献   

3.
贵州都格北盘江大桥主桥采用(80+2×88+720+2×88+80)m双塔双索面钢桁梁斜拉桥。主梁采用由钢桁架和正交异性钢桥面板结合的钢桁梁结构体系。通过在混凝土检修道、主桁弦杆内灌混凝土的压重形式平衡主、边跨恒载及活载的重量。全桥共设112对224根斜拉索,斜拉索上端锚固于上塔柱内的钢锚梁上,下端锚固于主桁架上弦杆的钢锚箱上。桥塔采用H形钢筋混凝土结构,桥塔基础采用28根直径2.8m的群桩基础。针对该桥特殊的地理位置和建设条件,对山区风荷载、钢桥面板结构体系、主梁架设方案及运营期斜拉索凝冻监测技术等进行研究,解决了大桥建设的技术问题。该桥已于2016年通车,目前运营状况良好。  相似文献   

4.
马鞍山长江公铁大桥主航道桥为主跨超千米的三塔斜拉桥。针对该桥建设标准高、荷载重、跨度大的特点,开展跨度布置、桥型方案、约束体系及主要构件研究。经综合分析比选,该桥最终采用(112+392+2×1 120+392+112) m三塔钢桁梁斜拉桥,采用中塔设置弹性索、边塔设置阻尼器的约束体系。主梁采用上层板桁结合、下层箱桁结合的双层桥面钢桁梁,横向布置3片主桁,主桁采用N形桁式。桥塔采用钢-混组合结构,中塔为纵、横向均为A形的空间四肢构造,边塔为横向A形、纵向I形构造,中塔比边塔高25 m,桥塔基础采用■4 m钻孔灌注桩。辅助墩、边墩采用横向门式墩,■2.5 m钻孔灌注桩基础。斜拉索采用标准抗拉强度2 100 MPa、■7 mm的镀锌铝合金高强度、低松弛平行钢丝拉索。  相似文献   

5.
采用空间有限元模型分析荆岳铁路洞庭湖大桥主桥在成桥运营状态和施工全过程中的动力特性,评估主桥抗风安全性能。分析表明,中塔外边的长索对约束中塔纵桥向位移有一定的作用,过渡墩、辅助墩对主梁的横向和竖向振动的制约作用比较明显。主梁为钢桁梁,扭转刚度大,各工况的主梁弯扭耦合颤振和分离流扭转颤振的临界风速均超过了各自的主梁颤振检验风速,满足抗风安全性要求。  相似文献   

6.
针对三塔斜拉桥在活载作用下的结构刚度问题,以5种跨径三塔斜拉桥为分析对象,通过改变主梁、斜拉索、索塔等主要构件刚度值,计算结构在活载作用下的结构刚度差异,研究了三塔斜拉桥竖向刚度及边塔、中塔纵向变位刚度的影响。研究结果表明:增加索塔刚度尤其是中塔刚度对提高大跨径三塔斜拉桥的结构刚度更经济有效,而对于小跨径的三塔斜拉桥来说,则可通过改变主梁或斜拉索的刚度来实现。斜拉索的刚度对边塔纵向变位刚度的影响较为明显,主梁次之。中塔刚度对中塔纵向变位刚度的影响较为明显,而边中塔刚度同时增加与仅增加中刚度的影响效应相差不到5%。  相似文献   

7.
西宁西平大街桥梁为135 m+(57+33)m=225 m空间曲形钢塔半漂浮体系钢梁斜拉桥。该桥采用塔梁分离,墩梁之间设置竖向支座和纵、横向挡块以增强抗震性能。主梁采用3.5 m高扁平钢箱梁结构,主跨采用双边箱结构,为满足锚固需求,边跨采用单箱四室结构,桥面采用UHPC铺装体系。桥塔采用3根箱形截面焊接组成空间曲形钢结构塔,桥面以下塔柱高10.613 2 m,为保证桥塔稳定及传递水平分力,中塔与边塔间及边塔相互之间设置连杆。边、中塔三个承台设置系梁连为一体(系梁设预应力),下设Φ2.0 m钻孔灌注桩;辅助墩采用柱式墩,承台为矩形截面,下设Φ1.5 m钻孔灌注桩;桥台采用一字式薄壁桥台,下设Φ1.5 m钻孔灌注桩。斜拉索采用Φ7 mm镀锌铝高强平行钢丝束。采用MIDASCivil和ANSYS有限元程序进行静力验算,结果表明该桥结构静力性能满足规范要求。  相似文献   

8.
李强  凌立鹏  郭昊霖 《公路》2021,66(10):135-141
与双塔斜拉桥相比,三塔斜拉桥由于中塔缺乏有效约束,结构柔性更大,竖向刚度计算往往不易满足设计要求,设置加劲索是提高结构竖向刚度的有效措施。以黄茅海大桥三塔斜拉桥为研究对象,系统研究了不同拉索布置形式对大跨度三塔斜拉桥竖向刚度的影响。结果表明,相比于设置塔间加劲索、边塔辅助索、同时设置辅助索和交叉索等拉索布置形式,在中塔设置5对辅助索或4对交叉索是满足本工程竖向刚度要求的有效经济措施;辅助索纵桥向锚固间距与初拉力值对结构竖向刚度影响较大,推荐的锚固间距为22.5m、初拉力为4 000kN。从便于工程实现角度考虑,辅助索比交叉索的实现方式更为简单经济,因此本工程的推荐拉索布置形式是在中塔设置5对辅助索。  相似文献   

9.
为研究三塔斜拉桥结构的力学行为特征,为三塔斜拉桥设计提供参考,结合三塔结合梁斜拉桥工程设计实例,建立三塔结合梁斜拉桥的有限元模型,对斜拉索重叠布置、塔间斜拉索、提高桥塔刚度及采用辅助墩等措施进行参数分析,总结其受力行为的变化规律。计算结果显示:设置重叠索、设置塔间加劲索、边跨设置辅助墩可有效改善中塔、主梁、斜拉索受力,减少塔顶水平位移值及跨中主梁挠度值;提高中塔刚度可以减少塔顶位移;提高边塔刚度对结构影响很小;提高中塔的塔高可以改善桥塔内力,但会增大塔顶位移。计算结果可为三塔结合梁斜拉桥结构布置设计提供参考。  相似文献   

10.
坦桑尼亚坦桑蓝跨海大桥主桥为(85+4×125+85) m五塔六跨矮塔斜拉桥,主梁为鱼腹式预应力混凝土等高箱梁,采用普通挂篮悬浇施工,设6个合龙口。为选择边跨、次边跨和中跨合理的合龙顺序,采用MIDAS Civil软件建立主桥不同合龙顺序有限元模型,分析合龙顺序对主梁恒载预拱度、应力、合龙阶段位移以及成桥索力的影响。结果表明:合龙顺序对主梁恒载预拱度影响较大,对主梁合龙阶段位移有一定影响,但对主梁应力、成桥索力影响较小,先边跨再次边跨最后中跨合龙的顺序为该桥最优合龙顺序。最终该桥采用了先边跨再次边跨最后中跨的顺序合龙,施工和成桥阶段全桥线形控制良好,结构受力安全。  相似文献   

11.
温州瓯江北口大桥主桥为主跨2×800m的三塔双层桥面钢桁梁悬索桥,上层通行6车道高速公路,下层通行6车道一级公路。针对该桥多塔、大跨、双层桥面的特点,对其支承体系、加劲梁、中塔及其基础设计关键技术进行研究。基于结构受力合理性以及运营安全等因素,该桥支承体系采用纵向在加劲梁梁端设置阻尼器;竖向在桥塔及边墩处设置竖向支座,并对桥塔处进行压重;横向在加劲梁与塔柱间设置抗风支座。综合考虑运输及安装、抗风稳定性、使用功能及经济性等因素,加劲梁采用正交异性钢桥面板与主桁结合的整体式钢桁梁,全桥4跨连续。为节省造价、降低后期维养工作量,中塔采用纵向A形钢筋混凝土结构,在中塔主缆鞍槽中设置多道竖向隔板,以提高主缆钢丝与鞍槽间的摩擦力,保证主缆抗滑移安全。为提高结构刚度、降低造价,中塔基础采用防撞能力强的大型沉井基础。  相似文献   

12.
研究了荷载作用下索道桥的竖向变位太大的问题。依据虚拟恒载同样能增加承重索的重力刚度、从而提高索道桥竖向刚度的基本原理。提出了虚拟恒载法控制竖向挠度的方法和初始预张力的确定方法,并给出了虚拟恒载的施加方法,即在主索因全部恒载作用而形成初始线形之后、承受活载之前,对其进行预拉。并运用小垂度柔索的索力转换方程,推导出了虚拟恒载的计算公式和初始垂度的确定方程,并考虑了温度变化和索道桥两支点高程差异的影响。通过对算例的计算结果分析,得出了活载挠跨比较合理的取值区间;虚拟恒载法控制竖向刚度的措施比较经济,且效果十分明显。  相似文献   

13.
温州瓯江北口大桥为高速公路和普通国道合建的通道,结合建桥条件对该桥主桥进行总体设计及结构选型。受通航孔位置、净空尺度控制,综合考虑防洪影响、结构受力和施工难度等因素,主桥采用主跨2×800m的三塔悬索桥。南边缆跨跨径为348m,北边缆跨设置6根背索,跨径为230m,两边跨均采用悬吊结构。选取平层合建和双层合建两种加劲梁方案进行比选,最终采用结构受力合理、建设难度较低的双层钢桁梁方案。为解决中塔主缆抗滑移的技术难题,该桥中塔选取整体结构刚度大、抗风稳定性好的纵向A形混凝土塔,并采用设置竖向摩擦板的中主索鞍。中塔基础采用整体性和稳定性好、能承受船舶直接撞击作用的沉井基础。边塔采用H形混凝土塔,钻孔灌注桩基础。南、北锚碇均采用安全可靠的重力式锚碇,北锚采用扩大基础,南锚采用大型沉井基础。  相似文献   

14.
谌启发 《桥梁建设》2012,42(3):19-23
为研究大跨度连续刚构柔性拱组合结构受力效应,以宜万铁路宜昌长江大桥为背景,在总结该类结构体系特点的基础上,采用桥梁博士分析软件建立全桥平面有限元模型,对全桥桥面施加竖向均布荷载(二期恒载),分析拱梁内力、竖向荷载及跨中截面弯矩的分配;将该桥与孔跨组成及截面尺寸完全相同的连续刚构桥在恒、活载作用下的结构内力进行对比,分析组合结构的拱梁组合效应。分析结果表明:在竖向均布荷载作用下,连续刚构柔性拱组合结构跨中范围吊杆轴力增加较大;结构跨中截面总弯矩绝大部分已转化为拱肋压力与主梁拉力;与连续刚构相比,活载作用下,连续刚构柔性拱组合结构的主梁弯矩显著减小,结构刚度提高较大,柔性拱作用明显。  相似文献   

15.
为探究结构参数对公铁两用斜拉-悬索协作体系桥受力性能的影响,确定结构参数的合理取值,以甬舟铁路西堠门公铁两用大桥为背景,采用MIDAS Civil软件建立该桥杆系有限元模型,计算分析辅助墩、吊跨比、矢跨比及交叉索数量等参数变化对结构竖向刚度、端吊杆活载轴力幅、桥塔弯矩等的影响,提出各结构参数的合理取值建议。结果表明:在边跨设置辅助墩能提高结构的竖向刚度、降低桥塔顺桥向弯矩和端吊杆活载轴力幅;吊跨比越大,结构的竖向刚度越小;矢跨比越大,结构的竖向刚度越大;增加交叉索对数可以降低端吊杆的活载轴力幅,但交叉索数量增至一定数量,端吊杆活载轴力幅值降低趋势趋于稳定;推荐大桥采用边跨设置2个辅助墩、跨中纯悬吊段吊跨比0.3、主缆中跨矢跨比1/6.5、交叉索9对的结构布置。  相似文献   

16.
为研究三塔自锚式悬索桥的索塔纵向刚度对结构整体受力的影响,首先,阐述了悬索桥的计算理论和增大悬索桥纵向刚度的方法,并对其中的增大中塔纵向抗弯刚度进行分析,通过建立全桥的分析模型,对某三塔自锚式悬索桥结构关键设计参数中的中边塔纵向抗弯刚度比分7种工况进行对比分析,得到了该桥中塔刚度对桥梁结构受力的影响规律,并给出了该桥中边塔刚度比的合理取值范围。结果表明:中塔纵向抗弯刚度的增加可以显著提高三塔自锚式悬索桥加劲梁的竖向刚度,而对两侧边塔的刚度影响不大;在活载作用下,中塔纵向抗弯刚度的增加使中塔的内部发生内力重分布;得出该桥的中边塔刚度比在1~1.5范围内较为合理,并给出了该桥中边塔刚度比的合理取值范围,为类似的工程建设提供参考。  相似文献   

17.
武汉二七长江大桥结构体系方案研究   总被引:5,自引:3,他引:2  
为优化三塔结合梁斜拉桥的受力和变形状态,以武汉二七长江大桥主桥设计为依托,采用有限元软件SCDS,从拉索布置、塔梁支承方式、桥塔刚度、主梁形式的选择及混合梁结合面位置的确定5个方面对该桥结构方案进行研究、比选.研究结果表明:加大中塔刚度是改善结构整体刚度的理想方式;中塔塔、梁固结,边塔竖向支承体系优于其他塔、梁支承体系;在边塔竖向支承的前提下,中塔与梁部铰接比完全固结优越;桥塔处主梁竖向采用支座支承的方式较优;混合梁结合面应选择在该截面弯矩影响线与基线围成的面积尽可能小的地方.  相似文献   

18.
三塔斜拉桥结构体系刚度相对较弱,提高体系竖向刚度、控制拉索应力幅、满足索塔受力要求是三塔斜拉桥结构设计的关键。以建设中的山区超高三塔结合梁斜拉桥为背景,运用空间有限元方法进行全桥多方案对比,研究索塔刚度、塔-梁支承体系对山区超高三塔斜拉桥结构力学行为的影响。结果表明,加大中塔刚度是提高三塔斜拉桥结构整体刚度的理想方式;边塔刚度对三塔斜拉桥结构整体刚度的影响较小;中塔塔-梁铰接、边塔竖向支承的结构体系对减小活载作用下的主梁挠度及温度作用下的塔底弯矩效果均较明显。  相似文献   

19.
贵黔高速鸭池河大桥采用主跨800m的钢桁-混凝土梁混合梁斜拉桥,主跨主梁为正交异性钢桥面板结合钢桁梁,边跨主梁为预应力混凝土边箱梁,主跨钢桁梁与边跨混凝土箱梁间采用钢箱过渡。为明确大跨度混合梁斜拉桥主梁受力特点,确保结构安全,对该桥主梁结构进行整体计算,并对其重点部位进行局部应力分析。计算结果表明:主梁结构整体刚度大,各项设计计算指标均满足规范要求,局部构造受力性能佳;该类型主梁能适应类似的主跨大、边主跨比小的混合梁斜拉桥体系。  相似文献   

20.
蒙华铁路洞庭湖特大桥主桥为主跨406m的三塔斜拉桥,主梁采用钢箱-钢桁组合结构。其中,下部钢箱梁宽21m,中心处梁高2.5m;上部钢桁梁采用华伦式布置,节间长14m,桁高12m。该桥主梁采用"先箱后桁"的方案施工,先安装下部钢箱梁,钢箱梁合龙后,在其顶面分组安装钢桁梁。边跨钢箱梁采用顶推法架设;主跨钢箱梁采用悬臂拼装法架设,钢箱梁节段利用300t架梁吊机整体吊装,在主跨跨中采用主动合龙方式合龙。上部钢桁梁杆件采用上弦杆制造长度修正、分组架设(5个节间为1组)、多个调整口合龙等技术施工,完成钢桁梁杆件拼装,并实现精确合龙。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号