首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
分析刃脚土阻力与侧壁摩阻力的大小和变化规律是沉井设计计算的重要内容,现有规范中所给的计算方法是否适用于大型沉井基础的设计计算,还需进一步验证。为此,通过布置刃脚踏面土压力传感器、侧壁土压力传感器以及GPS沉井姿态监测系统,对沪通长江大桥主墩沉井的下沉阻力开展了现场监测。结合大量现场监测资料,分析了大型沉井基础下沉期间的下沉机理与下沉阻力分布特征,对目前沉井下沉阻力计算中常用的规范和计算方法的适用性进行了分析,结果表明:目前的设计计算方法在计算刃脚土阻力时均未考虑刃脚所在土层前期固结压力的影响,因此,此类计算方法仅适用于沉井入土深度较小、刃脚所在土层前期固结压力不大的情况,当沉井入土深度较大时,计算值与实际值相比明显偏小;由于压力松弛效应,沉井侧壁摩阻力随入土深度的增大呈先增大后减小的变化规律,压力松弛区影响高度≥5 m。另根据现场监测结果,提出了侧壁摩阻力分布简化模型,分为以下3个阶段:第1阶段为线性增加阶段,侧壁摩阻力分布模式为三角形分布;第2阶段为压力松弛影响阶段,侧壁摩阻力分布模式为三角形分布+倒三角形分布;第3阶段为压力松弛下移阶段,摩阻力分布模式为梯形分布。研究结果可为沉井设计计算方法的优化提供参考。  相似文献   

2.
为明确交互地层中沉井下沉阻力特征,以常泰长江大桥6号墩沉井基础为背景,基于实测数据对黏土-砂交互式地层中大型沉井下沉过程中的刃脚踏面反力、侧壁压力及侧摩阻力的大小与分布规律进行研究。结果表明:沉井下沉阻力集中在外圈井壁,外圈井壁刃脚踏面反力与踏面埋置深度的相关性较高,且受沉井自重的影响显著,因下部粉质黏土层与粉砂、细砂层的极限承载力相当,随沉井底口由砂土层进入粉质黏土层,外圈井壁刃脚踏面反力均值并无显著变化;在第2次浇筑井壁混凝土阶段,沉井底面位于粉砂、细砂层与下部粉质黏土层分界面,随着沉井自重增大,砂土层内的刃脚踏面反力显著增加,粉质黏土层内的刃脚踏面反力因受土层的超孔隙水压力消散的影响反而有所减小;刃脚踏面由砂层进入粉质黏土层后,位于砂土层内的沉井侧壁压力及下沉侧摩阻力显著增大。  相似文献   

3.
通过分析马鞍山长江大桥锚碇基础大型沉井侧土压力的监测数据,提出了沉井侧摩阻力分布图式规律。当沉井下沉深度较小时,井壁侧阻力基本随着入土深度呈线性增长;而当沉井下沉超过一定深度后,随着下沉深度不断增加,侧摩阻力分布呈现上下小、中间大的分布图式,且峰值点以上的部分可基本看成线性分布。更重要的是,随着沉井入土深度的不断增加,沉井侧摩阻力峰值逐渐增加,且峰值发生的位置也逐渐下移,这主要是由于压力松弛区下移造成的。最后,提出同类大型沉井在类似地质条件下侧摩阻力的修正公式。  相似文献   

4.
沉井周边地质情况是沉井的设计及沉井下沉施工的主要因素,沉井的平稳下沉及成功下沉到设计位置是沉井施工的关键,因此有必要对沉井下沉过程的沉井仞脚土压力和井壁摩阻力进行实时监测,以指导沉井的信息化施工。四川金沙江向家坝水电站10号沉井仞脚土压力和井壁摩阻力的实时监测结果表明,监测数据真实地反映了沉井周边的地质情况,指导了沉井的信息化施工。  相似文献   

5.
徐智 《公路》1996,(7):25-28
在长东黄河大桥沉井基础施工中,采用了空气幕辅助沉进下沉。在加快沉井施工进度和提高工程质量方面取得了显著效果,由于空气幕减小了井壁与土壤之间的摩阻力使沉井下沉容易,也可利用空气幕不同区段送风使沉井顺利纠偏。  相似文献   

6.
前言沉井气幕下沉是我们学习铁道部大桥局二处介绍的一项新工艺。沉井气幕法工艺:就是在沉井外井壁的周围,预设竖直管道及若干层横向环形管道,每层环形管上钻有许多小孔,压缩空气通过管道从小孔向井壁外喷射,使沉井井壁周围的土壤液化,从而减小井壁与土壤间的摩阻力,使沉井加快下沉的方法。  相似文献   

7.
《公路》2015,(12)
马鞍山长江大桥北锚沉井体积巨大,下沉施工中有必要对其进行实时监测,主要监测内容包括刃脚与侧壁土压力、沉井结构钢板钢筋应力、沉井内外水位及沉井几何姿态等。首先采用数值分析,确定了沉井下沉初期为沉井结构受力的最不利工况,且边隔墙中跨部位为关键截面。监测结果表明,所选的关键截面较为合理。在沉井下沉初期,刃脚土压力对吸泥极为敏感。随着沉井的下沉,侧壁摩阻力逐渐增大,刃脚土压力趋于减小。沉井结构钢板与钢筋应力未出现过大拉应力,沉井几何姿态监测结果也表明下沉施工顺利。  相似文献   

8.
为了解深厚淤泥土层中大型沉井基础下沉阻力的分布特征,以温州瓯江北口大桥(主桥为主跨800m的三塔钢桁梁悬索桥)为背景,对中塔沉井基础下沉阻力监测数据进行分析,研究侧壁土压力、底面支承反力分布规律,以及刃脚底面反力与静力触探指标之间相关性。结果表明:淤泥土地层中施工的大型沉井基础,其侧壁压力沿深度方向近似线性增长,其值略大于相同深度位置的水土自重压力;沉井刃脚底面及斜面的反力值在底口入土一定深度后保持稳定,刃脚底面与斜面反力的比值为1.8~2.2,相对稳定;刃脚底面反力值与静力触探试验的锥尖阻力具有较高的相关性,在沉井底口中心下沉到一定深度后,其比值为1.4~2.2。  相似文献   

9.
马鞍山长江公路大桥北锚碇沉井基础施工中,沉井不排水下沉终沉阶段采用空气幕辅助下沉.该沉井采用3次接高、3次下沉的工艺,在第2节沉井接高时,在其井壁外侧布置竖向风管、水平风管和气龛,并在后续沉井接高中将竖向风管相应接长.终沉阶段向风管内通人压缩气体,气体从气龛孔喷出后使井壁与土壤之间的侧摩阻力减小,从而达到促使沉井快速下沉的目的.沉井下沉中应用空气幕对加快沉井施工进度、提高工程质量、降低工程造价方面有显著成效.  相似文献   

10.
常泰长江大桥主航道桥为主跨1 176m公铁合建斜拉桥,通过技术经济综合比选,桥塔基础采用沉井方案。针对超大型沉井基础截面尺寸大、自重重、入土深等问题,提出了减自重、减冲刷的新型台阶型沉井基础方案,通过模型试验及数值分析确定了沉井相关设计参数,并基于地基中土体的三维应力状态和摩尔-库伦强度破坏准则,建立了深大基础三维地基承载力计算表达式。沉井基础成功实施的关键是可控的取土下沉措施,研究了超大型沉井下沉机理,探明随着沉井平面尺度的不断增大,端阻力与井壁侧摩阻力相比逐渐成为控制因素,沉井下沉施工必须进行盲区取土。通过对沉井刃脚下土体破坏形态的研究,提出土体破坏的临界宽度控制法和台阶式取土法,可为沉井下沉施工提供指导。  相似文献   

11.
为了解特大圆形锚碇沉井下沉施工中下沉系数和稳定系数变化规律,以武汉鹦鹉洲长江大桥北锚碇高43m、外径66m的沉井基础为背景,运用太沙基理论对3次接高与3次下沉的不排水沉井施工方案各工况进行稳定性验算。结果表明:在前2次沉井下沉过程中,其下沉系数较大,下沉较容易;第3次下沉过程中,其下沉系数减小,下沉较困难,须采取相应助沉措施。沉井的正面阻力和侧摩阻力在各下沉工况下均随着沉井的下沉深度呈线性增加,且正面阻力在沉井节段接高稳定工况下增幅达到最大,在刃脚踏面支承工况下增幅最小,稳定性均满足要求。  相似文献   

12.
以温州市鹿城区七都岛—铁塔公园段跨瓯江电力隧道工程七都岛侧沉井基础为研究对象,对沉井在软土地基中下沉进行监测研究,通过现场监测数据分析,对沉井侧摩阻力、刃脚底部压力、沉井外土面沉降进行分析,得出沉井在软土地基中的下沉特性,这对理论研究与实际工程设计都有参考意义。现场监测数据结果表明:在软土地基中沉井侧摩阻力随着沉井入土深度的增加呈线性增加,到达一定峰值后缓慢降低;下沉过程中刃脚土压力的波动较为剧烈,其中刃脚斜面阻力占同一深度踏面阻力的10%左右;沉井下沉对周边土体沉降的影响范围比沉井在其他土体中小10%左右,为沉井下沉深度的10%左右。  相似文献   

13.
为揭示红层软岩钢管微型桩抗压承载特性,为红层软岩地基加固设计提供参考,选取湖南衡阳强风化粉砂质红层软岩地基,开展了不同长度注浆钢管微型桩原位抗压静载试验,分析了桩体沉降、桩身轴力和桩侧摩阻力的分布规律,并与规范计算值进行了比较。在修正微型桩荷载传递函数的基础上,提出了考虑桩顶位移的微型桩抗压承载力预测方法,并通过原位试验结果进行了验证。研究结果表明:钢管微型桩轴力主要分布在桩身中上部,桩侧摩阻力沿桩身呈“三角形”分布;随桩长的增加,抗压承载力非线性增加,桩顶沉降量非线性减小;桩长越短,极限侧摩阻力峰值越大;相较于规范计算值,实测桩端阻力、全桩长范围极限摩阻力均值以及抗压承载力均偏小。采用该方法得到的抗压承载力预测值与原位实测值之间相关性较好,相对误差为0.6%~11.6%。对红层软岩地基进行钢管微型桩加固设计时,建议桩端阻力不计入抗压承载力,按纯摩擦桩进行设计,并对规范中的极限侧摩阻力推荐值折减。  相似文献   

14.
钻孔灌注桩侧摩阻力静载试验与有限元分析   总被引:1,自引:0,他引:1  
进行钻孔灌注桩静载试验,获得桩的Q-S曲线,计算得到桩侧摩阻力值;用有限元法对加载试验进行了模拟,得到不同荷载下桩壁侧摩阻力在深度上的分布规律。结果表明:在一定深度覆盖层以下的红砂岩中,桩侧摩阻力大小随深度加深而减小;红砂岩层中桩基极限侧摩阻力值为800~900 kPa,建议设计取500 kPa,经济合理。  相似文献   

15.
介绍了泰州长江大桥南锚碇沉井基础的施工特点和下沉阻力现场监测技术。在下沉过程中,采用土压力计监测了每节沉井的侧壁土压力和沉井的刃脚土压力。通过这些监测数据的整理和规律分析,既控制了沉井的安全平稳的下沉,也为同类型的大型沉井的设计和施工提供了可以参考的依据。  相似文献   

16.
武汉鹦鹉洲长江大桥北锚碇新型沉井基础设计   总被引:1,自引:1,他引:0  
武汉鹦鹉洲长江大桥主桥为三塔四跨悬索桥。该桥北锚碇基础经多方案比选采用多圆孔环形截面新型沉井结构。沉井中间大圆孔内设置十字形隔墙,圆环内沿圆周均布有小直径井孔。沉井总高43 m,共分8节,第1节为钢壳混凝土沉井,第2~8节均为钢筋混凝土沉井。北锚碇施工中采用不排水下沉、井壁增加空气幕等措施减小施工难度及风险。采用软件FLAC3D对沉井施工过程进行数值模拟分析,评估施工安全性能、施工引起的环境效应及运营加载后锚碇基础的变形等。计算结果表明,沉井分节下沉施工过程中其结构、地面变形均满足规范要求,施工可有效避免对周围建筑物和长江大堤的不利影响。  相似文献   

17.
由于南京长江第四大桥北锚碇沉井基础支撑在分布不均匀的卵砾石层上,给沉井是否能够顺利下沉至设计标高带来诸多不确定因素,沉井不排水下沉后期下沉困难,开启了沉井井壁预先埋设的空气幕,助沉作用效果明显,主要介绍该沉井砂套结合空气幕助沉措施的设计、应用及作用效果等。  相似文献   

18.
通过桩基现场静载破坏试验,对比分析桩端后压浆和常规桩的桩端阻力、侧摩阻力、承载力的发挥性状,采用浆土相互作用机理和宾汉流体模型分析桩端后压浆承载力提高机理,结果表明:浆土相互作用提高桩端土强度,促进桩端阻力更大程度的发挥,极限荷载下桩端阻力值提高105.71%;浆液上返改变桩土界面性质,桩土相对位移减小侧摩阻力得到提高,极限荷载下侧摩阻力值提高16.31%,所占总荷载比例减小8.24%;试验分析浆液上返高度为54.54%桩长,理论分析与试验分析的浆液上返高度较相近,浆液上返段侧摩阻力的增强效应沿桩端向上减小;桩端后压浆改变摩擦桩的承载特性,桩基础沉降减缓,承载力提高28.57%。  相似文献   

19.
路堤下水泥土桩复合地基荷载传递规律研究   总被引:1,自引:0,他引:1  
考虑到路堤荷载下水泥土桩复合地基变形特性,假设了桩间土竖向变形模式,在此基础上,根据弹性力学基本原理,推导得到了水泥土桩复合地基桩身轴力与桩侧摩阻力的解析表达式。理论分析和有限元计算表明,路堤下复合地基桩身出现中性点,中性点以上产生负摩阻力;桩侧正、负摩阻力以及桩身轴力随桩体模量增加或土体模量减小而增加,随桩顶荷载增加而增加。理论计算结果与有限元计算结果比较一致。推导的桩身轴力与桩侧摩阻力解析表达式可为工程应用参考。  相似文献   

20.
黄土地区沉井井壁土压力计算研究   总被引:1,自引:0,他引:1       下载免费PDF全文
闫登峰 《路基工程》2010,(5):148-150
对沉井过程中沉井井壁所受的土压力,普遍观点认为沉井受主动土压力的作用,可根据Coulomb和Rankine土压力理论进行计算与分析。但在西安等黄土分布比较广泛的地区,该法所得土压力与实际的土压力有较大出入。有鉴于此,文中从井后土体回弹再压缩角度提出了比较符合实际土压力的井壁土压力计算方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号