首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of sensor technologies, such as loop detectors, traffic cameras, and radar have been developed for real-time traffic monitoring at intersections most of which are limited to providing link traffic information with few being capable of detecting turning movements. Accurate real-time information on turning movement counts at signalized intersections is a critical requirement for applications such as adaptive traffic signal control. Several attempts have been made in the past to develop algorithms for inferring turning movements at intersections from entry and exit counts; however, the estimation quality of these algorithms varies considerably. This paper introduces a method to improve accuracy and robustness of turning movement estimation at signalized intersections. The new algorithm makes use of signal phase status to minimize the underlying estimation ambiguity. A case study was conducted based on turning movement data obtained from a four-leg signalized intersection to evaluate the performance of the proposed method and compare it with two other existing well-known estimation methods. The results show that the algorithm is accurate, robust and fairly straightforward for real world implementation.  相似文献   

2.
Turning vehicle volumes at signalized intersections are critical inputs for various transportation studies such as level of service, signal timing, and traffic safety analysis. There are various types of detectors installed at signalized intersections for control and operation. These detectors have the potential of producing volume estimates. However, it is quite a challenge to use such detectors for conducting turning movement counts in shared lanes. The purpose of this paper was to provide three methods to estimate turning movement proportions in shared lanes. These methods are characterized as flow characteristics (FC), volume and queue (VQ) length, and network equilibrium (NE). FC and VQ methods are based on the geometry of an intersection and behavior of drivers. The NE method does not depend on these factors and is purely based on detector counts from the study intersection and the downstream intersection. These methods were tested using regression and genetic programming (GP). It was found that the hourly average error ranged between 4 and 27% using linear regression and 1 to 15% using GP. A general conclusion was that the proposed methods have the potential of being applied to locations where appropriate detectors are installed for obtaining the required data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In recent years, rapid advances in information technology have led to various data collection systems which are enriching the sources of empirical data for use in transport systems. Currently, traffic data are collected through various sensors including loop detectors, probe vehicles, cell-phones, Bluetooth, video cameras, remote sensing and public transport smart cards. It has been argued that combining the complementary information from multiple sources will generally result in better accuracy, increased robustness and reduced ambiguity. Despite the fact that there have been substantial advances in data assimilation techniques to reconstruct and predict the traffic state from multiple data sources, such methods are generally data-driven and do not fully utilize the power of traffic models. Furthermore, the existing methods are still limited to freeway networks and are not yet applicable in the urban context due to the enhanced complexity of the flow behavior. The main traffic phenomena on urban links are generally caused by the boundary conditions at intersections, un-signalized or signalized, at which the switching of the traffic lights and the turning maneuvers of the road users lead to shock-wave phenomena that propagate upstream of the intersections. This paper develops a new model-based methodology to build up a real-time traffic prediction model for arterial corridors using data from multiple sources, particularly from loop detectors and partial observations from Bluetooth and GPS devices.  相似文献   

4.
Estimation of intersection turning movements is one of the key inputs required for a variety of transportation analysis, including intersection geometric design, signal timing design, traffic impact assessment, and transportation planning. Conventional approaches that use manual techniques for estimation of turning movements are insensitive to congestion. The drawbacks of the manual techniques can be amended by integrating a network traffic model with a computation procedure capable of estimating turning movements from a set of link traffic counts and intersection turning movement counts. This study proposes using the path flow estimator, originally used to estimate path flows (hence origin–destination flows), to derive not only complete link flows, but also turning movements for the whole road network given some counts at selected roads and intersections. Two case studies using actual traffic counts are used to demonstrate the proposed intersection turning movement estimation procedure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Partly because of counting errors and partly because counts may be carried out on different days, traffic counts on links of a network are unlikely to satisfy the flow conservation constraint “flow IN = flow out” at every node of the network. Van Zuylen and Willumsen (1980) have described a method of eliminating inconsistencies in traffic counts when a single count is available for each link in the network. In this paper, the method is extended to the case when more than one count is available on some links of the network. In addition, an algorithm is described for application of the method.  相似文献   

6.
Many problems in transport planning and management tasks require an origindestination (O-D) matrix to represent the travel pattern. However, O-D matrices obtained through a large scale survey such as home or roadside interviews, tend to be costly, labour intensive and time disruptive to trip makers. Therefore, the use of low cost and easily available data is particularly attractive.The need of low-cost methods to estimate current and future O-D matrices is even more valuable in developing countries because of the rapid changes in population, economic activity and land use. Models of transport demand have been used for many years to synthesize O-D matrices in study areas. A typical example of this is the gravity model; its functional form, plus the appropriate values for the parameters involved, is employed to produce acceptable matrices representing trip making behaviour for many trip purposes and time periods.The work reported in this paper has combined the advantages of acceptable travel demand models with the low cost and availability of traffic counts. Three types of demand models have been used: gravity (GR), opportunity (OP) and gravity-opportunity (GO) models. Three estimation methods have been developed to calibrate these models from traffic counts, namely: non-linear-least-squares (NLLS), weighted-non-linear-least-squares (WNLLS) and maximumlikelihood (ML).The 1978 Ripon (urban vehicle movement) survey was used to test these methods. They were found to perform satisfactorily since each calibrated model reproduced the observed O-D matrix fairly closely. The tests were carried out using two assignment techniques, all-or-nothing and the stochastic method due to Burrell, in determining the routes taken through the network.requests for offprints  相似文献   

7.
Conventional methods for estimating origin-destination (O-D) trip matrices from link traffic counts assume that route choice proportions are given constants. In a network with realistic congestion levels, this assumption does not hold. This paper shows how existing methods such as the generalized least squares technique can be integrated with an equilibrium traffic assignment in the form of a convex bilevel optimization problem. The presence of measurement errors and time variations in the observed link flows are explicitly considered. The feasibility of the model is always guaranteed without a requirement for estimating consistent link flows from counts. A solution algorithm is provided and numerical simulation experiments are implemented in investigating the model's properties. Some related problems concerning O-D matrix estimation are also discussed.  相似文献   

8.
The application of recursive prediction error techniques to the problem of estimating origin-destination patterns from input and output volume counts is described. Each algorithm deals with the special case where route choice between origin and destination can be ignored. A gradient algorithm developed by Cremer and Keller (1983) turns out to be a special case of a family of methods described by Ljung and Söderström (1983). After describing how the methods developed in Ljung and Söderström (1983) could be modified so that the resulting estimates satisfy natural constraints, a number of algorithm possibilities are tested. Generally, those algorithms employing Gauss-Newton search directions appear superior to gradient-based methods, while the constraining procedures improve accuracy.  相似文献   

9.
Nowadays, new mobility information can be derived from advanced traffic surveillance systems that collect updated traffic measurements, both in fixed locations and over specific corridors or paths. Such recent technological developments point to challenging and promising opportunities that academics and practitioners have only partially explored so far.The paper looks at some of these opportunities within the Dynamic Demand Estimation problem (DDEP). At first, data heterogeneity, accounting for different sets of data providing a wide spatial coverage, has been investigated for the benefit of off-line demand estimation. In an attempt to mimic the current urban networks monitoring, examples of complex real case applications are being reported where route travel times and route choice probabilities from probe vehicles are exploited together with common link traffic measurements.Subsequently, on-line detection of non-recurrent conditions is being recorded, adopting a sequential approach based on an extension of the Kalman Filter theory called Local Ensemble Transformed Kalman Filter (LETKF).Both the off-line and the on-line investigations adopt a simulation approach capable of capturing the highly nonlinear dependence between the travel demand and the traffic measurements through the use of dynamic traffic assignment models. Consequently, the possibility of using collected traffic information is enhanced, thus overcoming most of the limitations of current DDEP approaches found in the literature.  相似文献   

10.
The paper presents a statistical model for urban road network travel time estimation using vehicle trajectories obtained from low frequency GPS probes as observations, where the vehicles typically cover multiple network links between reports. The network model separates trip travel times into link travel times and intersection delays and allows correlation between travel times on different network links based on a spatial moving average (SMA) structure. The observation model presents a way to estimate the parameters of the network model, including the correlation structure, through low frequency sampling of vehicle traces. Link-specific effects are combined with link attributes (speed limit, functional class, etc.) and trip conditions (day of week, season, weather, etc.) as explanatory variables. The approach captures the underlying factors behind spatial and temporal variations in speeds, which is useful for traffic management, planning and forecasting. The model is estimated using maximum likelihood. The model is applied in a case study for the network of Stockholm, Sweden. Link attributes and trip conditions (including recent snowfall) have significant effects on travel times and there is significant positive correlation between segments. The case study highlights the potential of using sparse probe vehicle data for monitoring the performance of the urban transport system.  相似文献   

11.
《Transportation Research》1978,12(2):121-130
Some of the problems associated with the deterministic modelling of an urban traffic network are investigated. A link model is combined with a newly-proposed junction model to produce an overall network model. A qualitative assessment based on practical tests and on computer simulation experiments is given.  相似文献   

12.
A new assignment principle for traveler behavior in an urban network is described which is based on empirical findings in the theory of travel budgets. It characterizes the distribution of travelers, demand, and modal split. It treats all travel decisions (whether to travel, where to go, how to get there) and the important costs (time and money) in a single, unified way. A numerical technique is proposed and it is applied to several examples to illustrate qualitative features.  相似文献   

13.
With the continuous expansion of urban rapid transit networks, disruptive incidents—such as station closures, train delays, and mechanical problems—have become more common, causing such problems as threats to passenger safety, delays in service, and so on. More importantly, these disruptions often have ripple effects that spread to other stations and lines. In order to provide better management and plan for emergencies, it has become important to identify such disruptions and evaluate their influence on travel times and delays. This paper proposes a novel approach to achieve these goals. It employs the tap-in and tap-out data on the distribution of passengers from smart cards collected by automated fare collection (AFC) facilities as well as past disruptions within networks. Three characteristic types of abnormal passenger flow are divided and analyzed, comprising (1) “missed” passengers who have left the system, (2) passengers who took detours, and (3) passengers who were delayed but continued their journeys. In addition, the suggested computing method, serving to estimate total delay times, was used to manage these disruptions. Finally, a real-world case study based on the Beijing metro network with the real tap-in and tap-out passenger data is presented.  相似文献   

14.
In this study, we develop a real-time estimation approach for lane-based queue lengths. Our aim is to determine the numbers of queued vehicles in each lane, based on detector information at isolated signalized junctions. The challenges involved in this task are to identify whether there is a residual queue at the start time of each cycle and to determine the proportions of lane-to-lane traffic volumes in each lane. Discriminant models are developed based on time occupancy rates and impulse memories, as calculated by the detector and signal information from a set of upstream and downstream detectors. To determine the proportions of total traffic volume in each lane, the downstream arrivals for each cycle are estimated by using the Kalman filter, which is based on upstream arrivals and downstream discharges collected during the previous cycle. Both the computer simulations and the case study of real-world traffic show that the proposed method is robust and accurate for the estimation of lane-based queue lengths in real time under a wide range of traffic conditions. Calibrated discriminant models play a significant role in determining whether there are residual queued vehicles in each lane at the start time of each cycle. In addition, downstream arrivals estimated by the Kalman filter enhance the accuracy of the estimates by minimizing any error terms caused by lane-changing behavior.  相似文献   

15.
Big data from floating cars supply a frequent, ubiquitous sampling of traffic conditions on the road network and provide great opportunities for enhanced short-term traffic predictions based on real-time information on the whole network. Two network-based machine learning models, a Bayesian network and a neural network, are formulated with a double star framework that reflects time and space correlation among traffic variables and because of its modular structure is suitable for an automatic implementation on large road networks. Among different mono-dimensional time-series models, a seasonal autoregressive moving average model (SARMA) is selected for comparison. The time-series model is also used in a hybrid modeling framework to provide the Bayesian network with an a priori estimation of the predicted speed, which is then corrected exploiting the information collected on other links. A large floating car data set on a sub-area of the road network of Rome is used for validation. To account for the variable accuracy of the speed estimated from floating car data, a new error indicator is introduced that relates accuracy of prediction to accuracy of measure. Validation results highlighted that the spatial architecture of the Bayesian network is advantageous in standard conditions, where a priori knowledge is more significant, while mono-dimensional time series revealed to be more valuable in the few cases of non-recurrent congestion conditions observed in the data set. The results obtained suggested introducing a supervisor framework that selects the most suitable prediction depending on the detected traffic regimes.  相似文献   

16.
This paper explores how to optimally locate public charging stations for electric vehicles on a road network, considering drivers’ spontaneous adjustments and interactions of travel and recharging decisions. The proposed approach captures the interdependency of different trips conducted by the same driver by examining the complete tour of the driver. Given the limited driving range and recharging needs of battery electric vehicles, drivers of electric vehicles are assumed to simultaneously determine tour paths and recharging plans to minimize their travel and recharging time while guaranteeing not running out of charge before completing their tours. Moreover, different initial states of charge of batteries and risk-taking attitudes of drivers toward the uncertainty of energy consumption are considered. The resulting multi-class network equilibrium flow pattern is described by a mathematical program, which is solved by an iterative procedure. Based on the proposed equilibrium framework, the charging station location problem is then formulated as a bi-level mathematical program and solved by a genetic-algorithm-based procedure. Numerical examples are presented to demonstrate the models and provide insights on public charging infrastructure deployment and behaviors of electric vehicles.  相似文献   

17.
The influence of route guidance advice on route choice in urban networks   总被引:5,自引:0,他引:5  
The paper begins by reviewing what is known about route choice processes and notes the mismatch between this knowledge and the route choice assumptions embedded in the most widely used assignment models. Empirical evidence on the influence of route guidance advice on route choice is reviewed and, despite its limited nature, is seen to suggest that users are reluctant to follow advice unless they find it convincing and that, the more familiar they are with the network, the less likely they are to accept advice. Typically only a small minority of journeys are made in total compliance with advice.Results from an interactive route choice simulator (IGOR) are summarised and are seen to reveal that compliance depends on the extent to which the advice is corroborated by other factors, on the drivers' familiarity with the network and on the quality of advice previously received. It is noted that the IGOR results are in a form which would enable response models to be calibrated.Recent approaches to the modelling of route choice in the context of guidance are discussed. Some are seen to make simplifying assumptions which must limit the relevance of their results; most make no allowance for the fact that drivers are unlikely to comply with all advice and several are not able to represent the benefits which guidance might bring in the context of sporadic congestion or incidents.As an alternative, a two phase model comprising a medium term strategic equilibrium and a day-specific simulation with explicit representation of driver response is proposed.Updated and extended from an earlier version published in theProceedings of the Japan Society of Civil Engineers (JSCE No 425/IV-4, 1991-1).  相似文献   

18.
We propose a dynamic linear model (DLM) for the estimation of day‐to‐day time‐varying origin–destination (OD) matrices from link counts. Mean OD flows are assumed to vary over time as a locally constant model. We take into account variability in OD flows, route flows, and link volumes. Given a time series of observed link volumes, sequential Bayesian inference is applied in order to estimate mean OD flows. The conditions under which mean OD flows may be estimated are established, and computational studies on two benchmark transportation networks from the literature are carried out. In both cases, the DLM converged to the unobserved mean OD flows when given sufficient observations of traffic link volumes despite assuming uninformative prior OD matrices. We discuss limitations and extensions of the proposed DLM. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Traffic signal control for urban road networks has been an area of intensive research efforts for several decades, and various algorithms and tools have been developed and implemented to increase the network traffic flow efficiency. Despite the continuous advances in the field of traffic control under saturated conditions, novel and promising developments of simple concepts in this area remains a significant objective, because some proposed approaches that are based on various meta-heuristic optimization algorithms can hardly be used in a real-time environment. To address this problem, the recently developed notion of network fundamental diagram for urban networks is exploited to improve mobility in saturated traffic conditions via application of gating measures, based on an appropriate simple feedback control structure. As a case study, the proposed methodology is applied to the urban network of Chania, Greece, using microscopic simulation. The results show that the total delay in the network decreases significantly and the mean speed increases accordingly.  相似文献   

20.
This paper explores a new type of congestion pricing that differentiates users with respect to their travel characteristics or attributes, and charges them different amounts of toll accordingly. The scheme can reduce the financial burden of travelers or lead to more substantial reduction of congestion. Given that the scheme requires tracking vehicles, an incentive program is designed to mitigate travelers’ privacy concerns and entice them to voluntarily disclose their location information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号