首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reviews the results of a series of experiments aimed at investigating the day-to-day dynamics of commuter behavior in congested traffic systems. The interactive experiments involve actual work commuters in a simulated traffic system, whereby commuters noncooperatively supply their decisions to a traffic simulation model that determines the resulting arrival times and associated trip times; these in turn form the basis of the commuters' decisions on the next day. Models are developed to predict the daily switching of departure time and/or route by individual commuters in response to experienced congestion in the system or to exogenously supplied information. These models are incorporated in a dynamic modelling framework for the analysis of the impacts of planned traffic disruptions, such as those associated with major highway repair and reconstruction activities.  相似文献   

2.
Transportation planners and transit operators alike have become increasingly aware of the need to diffuse the concentration of peak period travel in an effort to improve gasoline economy and reduce peak load requirements. An evaluation of the potential effectiveness of strategies directed to achieve this end requires an understanding of factors which affect commuter trip timing decisions. The research discussed in this article addresses this particular problem through the development and estimation of a commuter departure time (to work) choice model.A number of conclusions were drawn based on the departure time model results and related analyses. It was found that work schedule flexibility, mode, occupation, income, age, and transportation level of service all influence departure time choice. The uncertainty in work arrival time and the consequences of various work arrival times may also be determinants of commuter departure time choice.The estimated model represents improvements over previous work in that it more explicitly considers work arrival time uncertainty and travelers' perceived loss associated with varying work arrival times, and additional socio-demographic factors which can potentially affect departure time choice. Furthermore, the estimated model includes consideration of transit commuters, in addition to single occupant auto and carpool work travelers. The inclusion of transit commuters represents a particularly important contribution for policy analysis, since the model could potentially be used to study the effect of service and employment policies on transit system peak load requirements.  相似文献   

3.
This paper investigates the reliability of information on prevailing trip times on the links of a network as a basis for route choice decisions by individual drivers. It considers a type of information strategy in which no attempt is made by some central controller or coordinating entity to predict what the travel times on each link would be by the time it is reached by a driver that is presently at a given location. A specially modified model combining traffic simulation and path assignment capabilities is used to analyze the reliability of the real-time information supplied to the drivers. This is accomplished by comparing the supplied travel times (at the link and path levels) to the actual trip times experienced in the network after the information has been given. In addition, the quality of the decisions made by drivers on the basis of this information (under alternative path switching rules) is evaluated ex-post by comparing the actually experienced travel time (given the decision made) to the time that the driver would have experienced without the real-time information. Results of a series of simulation experiments under recurrent congestion conditions are discussed, illustrating the interactions between information reliability and user response.  相似文献   

4.
De Palma  André  Rochat  Denis 《Transportation》1999,26(3):263-281
In this paper, we present the results of an extended traveler behavior survey conducted in Geneva (Switzerland) in March 1994. In this survey, commuters were asked about the impact of various factors, related to individual or household characteristics and situational, contextual and environmental constraints on their basic travel decisions. In particular, the issues of mode, route and departure time choice were investigated, together with the diversion from normal patterns in response to adverse weather conditions. Some cross cultural comparisons are discussed with respect to the results of a similar survey conducted in Brussels (Belgium) in 1992 (Khattak & de Palma 1995, 1997).  相似文献   

5.
This paper provides empirical evidence to support the widely held view that institutional factors such as official work start times and staggered working hours are powerful policy tools in traffic management and in influencing travel behaviour. This approach is to be preferred over continued investment in infrastructure given the scarcity of land in Singapore. A more efficient use of existing infrastructure could be achieved by spreading peak travel. Full utilisation of the Mass Rapid Transit will depend on changing the commuter's perception on multi mode travel in addition to using public transport. While many studies have been carried out on modal choice, research on commuter trip departure decisions have been few and remain largely least understood. This paper employs multinomial logit and simultaneous nested logit analysis to model the choice of departure time (using household data collected in Singapore in 1983). Preliminary findings show that schedule delay, travel cost, and journey time to be important influences on commuter's choice of trip departure time to work. Some difficulties are highlighted and suggestions for further research are made.  相似文献   

6.
Considerable public and private resources are devoted to the collection and dissemination of real-time traffic information in the Chicago area. Such information is intended to help individuals make more informed travel decisions, yet its effect on behavior remains largely unexplored. This study evaluates the effect of traffic information on travelers' route and departure time changes and provides a stronger basis for developing advanced information systems. Downtown Chicago automobile commuters were surveyed during the AM peak period. The results indicate that a majority of the respondents access, use and respond to information. For example, individuals use travel information to reduce their anxiety—even if they do not change travel decisions; this indicates that information may have “intrinsic” value. That is, simply knowing traffic conditions is valued by travelers. More than 60% of the respondents had used traffic information to modify their travel decisions. Multivariate analysis using the ordered probit model showed that individuals were more likely to use traffic reports for their route changes if they perceived traffic reports to be accurate and timely, and frequently listened to traffic reports. Respondents were more likely to change their departure times if they perceived traffic reports to be accurate and relevant, and frequently listened to traffic reports. The implication for Advanced Traveler Information Systems are that they may be designed to support both enroute and pre-trip decisions. ATIS performance, measured in terms of accuracy, relevance and timeliness would be critical in the success of such systems. Further, near-term prediction of traffic conditions on congested and unreliable routes (where conditions change rapidly) and incident durations is desirable.  相似文献   

7.
The trip timing and mode choice are two critical decisions of individual commuters mostly define peak period traffic congestion in urban areas. Due to the increasing evidence in many North American cities that the duration of the congested peak travelling periods is expanding (peak spreading), it becomes necessary and natural to investigate these two commuting decisions jointly. In addition to being considered jointly with mode choice decisions, trip timing must also be modelled as a continuous variable in order to precisely capture peak spreading trends in a policy sensitive transportation demand model. However, in the literature to date, these two fundamental decisions have largely been treated separately or in some cases as integrated discrete decisions for joint investigation. In this paper, a discrete-continuous econometric model is used to investigate the joint decisions of trip timing and mode choice for commuting trips in the Greater Toronto Area (GTA). The joint model, with a multinomial logit model for mode choice and a continuous time hazard model for trip timing, allows for unrestricted correlation between the unobserved factors influencing these two decisions. Models are estimated by occupation groups using 2001 travel survey data for the GTA. Across all occupation groups, strong correlations between unobserved factors influencing mode choice and trip timing are found. Furthermore, the estimated model proves that it sufficiently captures the peak spreading phenomenon and is capable of being applied within the activity-based travel demand model framework.  相似文献   

8.
The timing of commuting trips made during morning and evening peaks has typically been investigated using Vickrey’s bottleneck model. However, in the conventional trip-based approach, the decisions that commuters make during the day about their activity schedules and time use are not explicitly considered. This study extends the bottleneck model to address the scheduling problem of commuters’ morning home-to-work and evening work-to-home journeys by using an activity-based approach. A day-long activity-travel scheduling model is proposed for the simultaneous determination of departure times for morning and evening commutes, together with allocations of time during the day among travel and activities undertaken at home or at the workplace. The proposed model maximizes the total net utility of the home-based tour, which is the difference between the benefits derived from participating in activities and the disutility incurred by travel between activity locations. The properties of the model solution are analytically explored and compared with the conventional bottleneck model for a special case with constant marginal-activity utility. For the case with linear marginal-activity utility, we develop a heuristic procedure to seek the equilibrium scheduling solution. We also explore the effects of marginal-work utility (or the employees’ average wage level) and of flexible work-hour schemes on the scheduling problem in relation to the morning and evening commuting tours.  相似文献   

9.

This paper presents a closed-form Latent Class Model (LCM) of joint mode and departure time choices. The proposed LCM offers compound substitution patterns between the two choices. The class-specific choice models are of two opposing nesting structures, each of which provides expected maximum utility feedback to the corresponding class membership model. Such feedback allows switching class membership in response to the changes in choice contexts. The model is used for an empirical investigation of commuting mode and departure time choices in the Greater Toronto and Hamilton Area (GTHA) by using a large sample household travel survey dataset. The empirical model reveals that overall 38% of the commuters in the GTHA are more likely to switch modes than departure times and 62% of them are more likely to do the reverse. The empirical model also reveals that the average Subjective Value of Travel Time Savings (SVTTS) of the commuters in the GTHA can be as low as 3 dollars if a single choice pattern of departure time choices nested within mode choices is considered. It can also be as high as 67 dollars if the opposite nesting structure is assumed. However, the LCM estimates the average SVTTS to be around 27 dollars in the GTHA. An empirical scenario analysis by using the estimated model indicates that a 50% increase in morning peak period car travel time does not sway more than 4% of commuters from the morning peak period.

  相似文献   

10.
This paper examines two heuristic rules proposed for describing urban commuters' predictions of travel time as well as the adjustments of departure time in response to unacceptable arrivals in their daily commute under limited information. It is based on the notion that the magnitude of the predicted travel time depends on each commuter's own experience, including recallable travel time, schedule delay, and difficulties in searching for a satisfactory departure time. An explanatory analysis is first performed to compare these two rules, based on the information provided by a set of commuters interacting over 24 days through a simulated traffic system. A more elaborate model specification which captures the dynamic interrelation between the commuter's cumulative and recent experience with the traffic system's performance is then proposed. The model parameters are estimated with explicit consideration of the serial correlation arising from repeated decisions by the same individuals and the contemporaneous interaction with other system users' decisions through the traffic system's performance.  相似文献   

11.
Travel time is an important performance measure for transportation systems, and dissemination of travel time information can help travelers make reliable travel decisions such as route choice or departure time. Since the traffic data collected in real time reflects the past or current conditions on the roadway, a predictive travel time methodology should be used to obtain the information to be disseminated. However, an important part of the literature either uses instantaneous travel time assumption, and sums the travel time of roadway segments at the starting time of the trip, or uses statistical forecasting algorithms to predict the future travel time. This study benefits from the available traffic flow fundamentals (e.g. shockwave analysis and bottleneck identification), and makes use of both historical and real time traffic information to provide travel time prediction. The methodological framework of this approach sequentially includes a bottleneck identification algorithm, clustering of traffic data in traffic regimes with similar characteristics, development of stochastic congestion maps for clustered data and an online congestion search algorithm, which combines historical data analysis and real-time data to predict experienced travel times at the starting time of the trip. The experimental results based on the loop detector data on Californian freeways indicate that the proposed method provides promising travel time predictions under varying traffic conditions.  相似文献   

12.
We study the trip scheduling preferences of train commuters in a real-life setting. The underlying data have been collected during large-scale peak avoidance experiment conducted in the Netherlands, in which participants could earn monetary rewards for traveling outside peak hours. The experiment included ca. 1000 participants and lasted for multiple months. Holders of an annual train pass were invited to join the experiment, and a customized smartphone app was used to measure the travel behavior of the participants. We find that compared to the pre-measurement, the relative share of peak trips decreased by 22% during the reward period, and by 10% during the post-measurement. By combining multiple complementary data sources, we are able to specify and estimate (MNL and panel latent class) departure time choice models. These yield plausible estimates for the monetary values that participants attach to reducing travel time, schedule delays, the number of transfers, crowdedness, and unreliability.  相似文献   

13.
After the widespread deployment of Advanced Traveler Information Systems, there exists an increasing concern about their profitability. The costs of such systems are clear, but the quantification of the benefits still generates debate. This paper analyzes the value of highway travel time information systems. This is achieved by modeling the departure time selection and route choice with and without the guidance of an information system. The behavioral model supporting these choices is grounded on the expected utility theory, where drivers try to maximize the expected value of their perceived utility. The value of information is derived from the reduction of the unreliability costs as a consequence of the wiser decisions made with information. This includes the reduction of travel times, scheduling costs and stress. This modeling approach allows assessing the effects of the precision of the information system in the value of the information.Different scenarios are simulated in a generic but realistic context, using empirical data measured on a highway corridor accessing the city of Barcelona, Spain. Results show that travel time information only has a significant value in three situations: (1) when there is an important scheduled activity at the destination (e.g. morning commute trips), (2) in case of total uncertainty about the conditions of the trip (e.g. sporadic trips), and (3) when more than one route is possible. Information systems with very high precision do not produce better results. However, an acceptable level of precision is completely required, as information systems with very poor precision may even be detrimental. The paper also highlights the difference between the user value and the social value of the information. The value of the information may not benefit only the user. For instance, massive dissemination of travel time information contributes to the reduction of day-to-day travel time variance. This favors all drivers, even those without information. In these situations travel time information has the property that its social benefits exceed private benefits (i.e. information has positive externalities). Of course, drivers are only willing to cover costs equal or smaller than their private benefits, which in turn may justify subsidies for information provision.  相似文献   

14.
This study analyzes the problem of conflicting travel time and emissions minimization in context of daily travel decisions. The conflict occurs because the least travel time option does not always lead to least emissions for the trip. Experiments are designed and conducted to collect data on daily trips. Random parameter (mixed) logit models accounting for correlations among repeated observations are estimated to find the trade-off between emissions and travel time. Our results show that the trade-off values vary with contexts such as route and departure time choice scenarios. Further, we find that the trade-off values are different for population groups representing male, female, individuals from high income households, and individuals who prefer bike for daily commute. Based on the findings, several policies are proposed that can help to lower greenhouse gas (GHG) emissions from transportation networks. This is one of the first exploratory studies that analyzes travel decisions and the corresponding trade-off when emissions related information are provided to the road users.  相似文献   

15.
This research project took advantage of the implementation of a major mass transit improvement by New Jersey Transit which provided a "one-seat ride" into New York City for many commuters who previously had to transfer in Hoboken in order to take Port Authority Trans Hudson (PATH) trains into New York City. The creation of this new service provided a natural experiment in which some riders switched to the new route, while others continued to use their previous route. We studied psychological and psychophysiological responses to these commuting options, using a quasi-experimental, pre-post change, field research design.We found that riders on this new line had lower levels of stress, as multiply measured, than they had earlier, before the advent of this new train, or than did other riders currently using the Hoboken-PATH option. The stress effects seemed to be mediated by the time of the trip – that is, the reduced trip time of the new, direct service seemed to be a primary factor in the reduced stress to riders. Predictability of the trip was also inversely correlated with stress, but did not distinguish between the commuter groups. These results were largely replicated with a student group who rode the same lines acting as simulated commuters.  相似文献   

16.
This paper explores the use of smartphone applications for trip planning and travel outcomes using data derived from a survey conducted in Halifax, Nova Scotia, in 2015. The study provides empirical evidence of relationships of smartphone use for trip planning (e.g. departure time, destination, mode choice, coordinating trips and performing tasks online) and resulting travel outcomes (e.g. vehicle kilometers traveled, social gathering, new place visits, and group trips) and associated factors. Several sets of factors such as socio-economic characteristics and travel characteristics are tested and interpreted. Results suggest that smartphone applications mostly influence younger individuals’ trip planning decisions. Transit pass owners are the frequent users of smartphone applications for trip planning. Findings suggest that transit pass owners commonly use smartphone applications for deciding departure times and mode choices. The study also identifies the limited impact of smartphone application use on reducing travel outcomes, such as vehicle kilometers traveled. The highest impact is in visiting new places (a 48.8% increase). The study essentially offers an original in-depth understanding of how smartphone applications are affecting everyday travel.  相似文献   

17.
In the past decade, many studies have explored the relationship between travelers’ travel mode and their trip satisfaction. Various characteristics of the chosen travel modes have been found to influence trip experiences; however, apart from the chosen modes, travelers’ variability in mode use and their ability to vary have not been investigated in the trip satisfaction literature. This current paper presents an analysis of commuting trip satisfaction in Beijing with a particular focus on the influence of commuters’ multimodal behavior on multiple workdays and their modal flexibility for each commuting trip. Consistent with previous studies, we find that commuting trips by active modes are the most satisfying, followed by trips by car and public transport. In Beijing, public transport dominates. Urban residents increasingly acquire automobiles, but a strict vehicle policy has been implemented to restrict the use of private cars on workdays. In this comparatively constrained context for transport mode choice, we find a significant portion of commuters showing multimodal behavior. We also find that multimodal commuters tend to feel less satisfied with trips by alternative modes compared with monomodal commuters, which is probably related to their undesirable deviation from habitual transport modes. Furthermore, the relationship between modal flexibility and trip satisfaction is not linear, but U-shaped. Commuters with high flexibility are generally most satisfied because there is a higher possibility for them to choose their mode of transport out of preference. Very inflexible commuters can also reach a relatively high satisfaction level, however, which is probably caused by their lower expectations beforehand and the fact that they did not have an alternative to regret in trip satisfaction assessments.  相似文献   

18.
This paper presents an economic model of generalized travel cost and provides an empirical study of the parameters of the cost function. The route-choice model that is estimated combines McFadden's theory of qualitative choice behavior with a function for the value of travel time in which total trip time and the income level are assumed to influence the marginal value of time. The empirical results indicate that, for a sample of commuters in the Chicago metropolitan area in 1972, the value of time is a positive function of total trip time, but is not a function of income.  相似文献   

19.
This paper presents exploratory and statistical analyses of the activity–travel behaviour of non-workers in Bangalore city in India. The study summarises the socio-demographic characteristics as well as the activity–travel behaviour of non-workers using a primary activity–travel survey data collected by the authors. Where possible, the research also compares the analysis findings with the case studies on activity–travel behaviour of non-workers, carried out in developed and developing countries. This gives an opportunity to understand the differences/similarities in the activity–travel behaviour of non-workers across diverse socio-cultural settings. The preliminary exploratory analysis shed light on the differences in activity participation, trip chaining, time-of-day preference for trip departure, and mode use behaviour of non-workers in Bangalore city. Statistical models were developed for investigating the effects of individual and household socio-demographics, land use parameters, and travel context attributes on activity participation, trip chaining, time-of-day choice, and mode choice decisions of non-workers. A few important results of the analysis are the influence of viewing television at home on out-of-home activity participation and trip-chaining behaviour, and the impact of in-home maintenance activity duration on time-of-day choice. Further, based on the findings of the initial analyses, an attempt has been made in this study to develop an integrated model that links time allocation, time-of-day choice, and trip chaining behaviour of non-workers. The study also discusses the implications of the research findings for transportation planning and policy for Bangalore city.  相似文献   

20.
Although several cities in India are developing the metro system, there are lacunas associated with transfer facilities in and around metro stations. The present work aims to investigate the perception of commuters of Kolkata city, India in terms of their willingness-to-pay (WTP) for improvement of transfer facilities. A stated preference survey instrument was designed to collect choice responses from metro commuters and the database was analysed by developing random parameter logit (RPL) models. The decomposition effects of various socioeconomic and trip characteristics on mean estimates were also investigated in random parameter logit models with heterogeneity. The work indicates significantly high WTP of metro commuters as compared to the average metro fare for improvement of various qualitative attributes of transfer facility such as ‘facility for level change’, ‘visual communication’, ‘pedestrian crossing’, and ‘pedestrian environment’. The WTP values are also found to vary across different groups of commuter formed on the basis of ‘trip purpose’, ‘monthly household income’, ‘station type’ and ‘metro fare’. ‘Work trip’ commuters are found to have higher WTP for improvement of access time, pedestrian environment and use of an escalator over the elevator. On the other hand, ‘high-income group’ commuters have shown higher WTP for improvement of access time, pedestrian crossing, and pedestrian environment. While ‘high fare group’ commuters have higher WTP for access time and pedestrian environment, heterogeneity is also observed in WTP for facility for level change, pedestrian crossing, and pedestrian environment across commuters using different ‘station type’ (underground, at-grade, and elevated). The findings from the study provide a basis for formulating policies for the improvement of transfer facilities in and around metro stations giving due attention to the preference of commuters having different socioeconomic and trip characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号