首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
某新型常温固化船用胶粘剂粘合强度,技术指标要求≥1.5 MPa,为了实际应用该胶粘剂,研究了胶粘剂的粘接工艺。以胶粘剂粘接钢/橡胶拉伸试样为对象,研究了不同施压载荷和时间对粘合强度的影响。在固定施压载荷和时间的条件下,对单位面积胶粘剂用量与粘合强度的关系进行了研究。结果表明,在施压压力0.18 MPa、施压时间5 h条件下,将单位面积胶粘剂用量控制在(21.64~59.43)g/m2(双面),其粘合强度可满足技术指标要求。  相似文献   

2.
The present work is motivated by the increasing need for cost-efficient solutions in offshore structural systems for wind energy production and for improvement of their structural performance. The structural behavior and design of high-strength steel welded tubular connections (yield strength higher than 700 MPa) subjected to monotonic and strong cyclic loading is investigated. In the first part of the paper, an experimental investigation is presented on high-strength steel tubular X-joints subjected to monotonic and cyclic loading far beyond the elastic limit of the material, leading to weld fracture. Two grades of weld metal material are employed in the welding process of the specimens. The experimental results indicate that the weld material grade has a significant influence on the deformation capacity of the welded connection under monotonic loading conditions, and its low-cycle fatigue life. The experimental procedure is simulated using advanced finite element models, elucidating several features of joint behavior and complementing the experimental results. Overall, a good agreement is found between numerical simulations and experimental results, in terms of both global response and local strains at the vicinity of the welds. Furthermore, the structural performance of the welded tubular joints under consideration is assessed using available design methodologies in terms of both ultimate strength and low-cycle fatigue resistance, in an attempt to validate an efficient design methodology for low-cycle fatigue. The results from this research effort are aimed at developing the necessary background for the possible use of high-strength steel in tubular steel lattice structures, particularly in offshore platforms for renewable energy production. They can also be used as a basis for the possible amendment of relevant design specifications and recommendations for including special provisions for high-strength steel structural systems.  相似文献   

3.
One of the most important applications of adhesives in shipbuilding is the manufacturing of structural laminated materials. The application of these types of hybrid materials in a marine environment for extended periods of time and under adverse environmental conditions results in the accelerated degradation of the adhesive. Therefore, a specific experimental procedure is required to ensure the adequate performance of this adhesive bonded joint during its service life. In this study, an experimental method to analyse a vinylester adhesive in steel–adhesive–steel test specimens was applied (“mixed cantilever beam” specimens were used and mixed mode tests were carried out to obtain the fracture envelope). It was concluded that the energy release rate increased with the stress mode under dry conditions. In addition, the cohesive laws of vinylester showed that both the tangential stress and the strain are higher than the normal stress and strain. Finally, it was observed that adding distilled water to the adhesive joint for short periods of time improved its fracture strength.  相似文献   

4.
激光焊接钢质夹层结构的连接节点,是钢质夹层结构在舰船应用中的关键问题之一。梳理了钢质夹层结构之间、钢质夹层结构与传统船体结构之间的典型连接节点;阐述了钢质夹层结构连接节点的必要性和重要性,分析了连接节点设计需考虑的多种因素:连接强度、制造工艺和结构重量;汇总了平面对接的连接形式的现有研究成果,并总结了2种高效的有限元分析方法:平面应变模型的分析方法和壳-体连接结合子模型的分析方法。  相似文献   

5.
在国外,激光焊接钢质夹层结构已用于实船,其连接构件的强度特性是尚待解决的关键问题之一.应用有限元分析软件ANSYS,研究2种典型连接构件的面外强度特性及灵敏度.计算中,为降低计算规模,采用MPC壳体连接和子模型分析技术;进行灵敏度分析时,为减少大量方案计算所需的繁琐人工操作,应用Matlab驱动ANSYS,以批处理方式的有限元分析计算各方案的响应值.计算结果显示,在普通焊接接头处存在一定的应力集中.在控制结构重量的条件下,若要降低接头的应力集中系数,对于内嵌方框型连接构件而言,增大连接构件长度和夹层端部面板长度最为有效,增大水平板厚度也有一定的作用;对于外接平板型连接构件而言,最有效的途径是增大连接构件的厚度,并选取合适的连接构件长度.  相似文献   

6.
孙吉  桂赤斌  陈文君 《船舶力学》2012,16(5):580-584
为了研究不同强度匹配对焊接接头安全性能的影响,基于"欧洲工业结构完整性评定程序(SINTAP)"提供的失效评定图FAD方法,针对不同强度匹配的10CrNi3MoV船体钢焊接接头,建立了对应的失效评定曲线。根据母材与焊缝的拉伸试验及CTOD(裂纹尖端张开位移)试验结果,对比分析了3种匹配条件下的接头安全评定结果。研究表明,对于选定的评定级别,不同强度匹配系数对FAD图形状的影响很小;焊缝强度较高时,接头对塑性失稳的抵抗能力取决于母材性能;接头韧度水平相似时,低匹配接头对塑性失稳及脆性断裂的抵抗能力均稍差,弱于等匹配与高匹配;焊缝强度稍高于母材的"等强匹配"安全裕度最大,安全性最佳。  相似文献   

7.
To address the weight and corrosion challenge in deep-water, replacing the steel tensile armour in flexible pipes with composite materials is an alternative conceptual approach. An axisymmetric structural responses model is built for this novel composite armoured flexible pipe, with interlayer gaps that may occur in the unbonded structure considered through an iterative algorithm. The tensile strength of steel and composite armoured pipes are predicted based on different constitutive relations of steel and composite. Essential quantities are obtained, such as tensile stiffness, deformations of each layer and interlayer gaps or contact pressures. Considering the helix form of carcass and pressure armour, a finite element model is established for the verification of the theoretical model. Case study shows that the tensile stiffness of flexible pipe is overestimated with the interlayer gap ignored. Compared with steel armoured flexible pipe, the composite armoured pipe, whose tensile stiffness decreases less as external pressure increases, meanwhile has higher values of tensile ultimate strength and torsion stiffness. Some suggestions about fiber types and volume fraction for composite tensile strips are given to ensure good performance of axial tensile strength and stiffness.  相似文献   

8.
焊接接头的屈服强度匹配方式对接头的设计、制造工艺、裂纹敏感性以及破坏行为有重要影响,焊缝金属、母材、焊接接头强度以及焊接接头强度匹配系数的分布是焊接结构强度、寿命和可靠性计算的基础.文章介绍了对12Ni3CrMoV钢焊接接头屈服强度匹配系数的分布进行的研究,并给出了分析结果.作者认为控制母材和焊缝金属的屈服强度分布的标准差,是降低失配概率的主要途径.  相似文献   

9.
In case of a submerged floating tunnel (SFT), which is difficult to cast in-site underwater construction, it is modularized on land and then assembled them in the field. Therefore, it is influential to investigate the structural performance of the joints between the modules. A concept of the steel-concrete composite hollow in the SFT, which stably maintains the joints, has been proposed by applying prestressing method to resist various external loads. In this study, the bending behavior of module joints was experimentally analyzed to evaluate the safety for the bending deformation that is dominant in SFT. Test results show that there is a difference at the module joint portion in the performance depending on whether or not the inner steel tube is connected. The bending stiffness of the module joints in the SFT was very similar but there was a difference in strength. The maximum strength was increased from 700 kN to 1200 kN when the inner tube was connected, and the residual displacement was increased from 15 mm to 40 mm. As a result, in the design of the module joint, depending on the purpose of SFT, it is possible to consider both methods which is allowing the ductility behavior of internal tube and controlling the tight connection. Moreover, the failure criterion of the bending behavior of the module joint can be selected as the maximum load or deformation limit.  相似文献   

10.
对船体结构钢(2C和903)焊接节点进行了振动疲劳强度试验研究,建立了一个基于疲劳试验结果得到的σ99.9与已有规范中疲劳允许力值(σ)之间的关系。这个关系对今后规范中允许应力的制定有参考价值。  相似文献   

11.
肘板连接的极限强度分析   总被引:3,自引:1,他引:2  
为比较各种肘板连接的强度特征,本文用非线性有限元方法计算了4种肘板连接的极限强度。计算中考虑了大位移、材料塑性和装配误差等影响。计算结果表明,按照同一规范设计的4种肘板连接对于正常载荷均具有足够的强度,但相对而言,对接连接比搭接连接具有较高的极限强度。  相似文献   

12.
为完善新型型钢混凝土海洋平台的设计计算理论,本文针对梁内型钢腹板是否穿过节点区的不同情况,参考陆上新型钢筋混凝土建筑的新技术、结合海洋平台的特点,采用变角软化桁架模型,利用平衡条件、协调条件及混凝土软化应力-应变关系,并考虑"扭结"影响(强度弱化)的钢筋应力-应变关系,提出了压弯剪复合受力作用下的框架梁柱节点的受力全过程计算方法.利用该方法对国内外所作的53个框架节点试件进行了受力全过程分析,计算结果与试验结果吻合程度较好,为新型海洋石油平台的研究、设计与施工提供了有益的探索.  相似文献   

13.
The study presents an analysis of S355J2+N steel and AA5083 aluminum alloy welded structural joints using explosion welded transition joints of reduced thickness. The transition joint thickness reduction significantly hinders the welding of the joints due to the risk of damage to the Al/steel interface as a result of the high temperatures during welding. Numerical modeling of the welding process is performed to determine safe welding parameters for the transition joint. The numerical analysis is supported by measurements of the temperature areas by a thermographic method. Welded structural joints are analyzed to determine the welding influence on the mechanical properties and microstructure of the transition joints. On this basis, a number of tests are carried out, including microhardness distribution measurements, strength tests of joints in two welding configurations and strength tests of the microspecimens of transition joints. Moreover, an experimental and numerical analysis of strain and stress distributions is carried out in combination with the use of the finite element method and digital image correlation, which allow us to identify the critical areas of the joints with regards to their strength. The results of the microstructural and strength tests carried out using macro- and microspecimens show softening of the aluminum alloy layers. However, the AA5083 and AA1050 layer softening as a result of welding did not reduce the load capacity of the transition joints, which could determine the strength of the dissimilar Al/steel welded structural joints.  相似文献   

14.
This paper presents an innovative eccentric jacket substructure for offshore wind turbines to better withstand intense environmental forces and to replace conventional X-braced jackets in seismically active areas. The proposed eccentric jacket comprises of completely overlapped joint at every joint connection. The joint consists of a chord and two braces in a single plane. The two braces are fully overlapped with a short segment of the diagonal brace welded directly onto the chord. The characteristic feature of this joint configuration is that the short segment member can be designed to absorb and dissipate energy under cyclic load excitation. The experimental and numerical study revealed that the completely overlapped joint performed better in terms of strength resistance, stiffness, ductility, and energy absorption capacity than the conventional gap joints commonly found in typical X-braced jacket framings. The eccentric jacket could also be designed to becoming less stiff, with an inelastic yielding and local buckling of short segment member, so as to better resist the cyclic load generated from intense environmental forces and earthquake. From the design economics, the eccentric jacket provided a more straightforward fabrication with reduced number of welded joints and shorter thicker wall cans than the conventional X-braced jacket. It can therefore be concluded based on the results presented in the study that by designing the short segment member in accordance with strength and ductility requirement,the eccentric jacket substructure supporting the wind turbine could be made to remain stable under gravity loads and to sustain a significantly large amount of motion in the event of rare and intense earthquake or environmental forces, without collapsing.  相似文献   

15.
李永胜  王纬波 《船舶力学》2011,15(9):1052-1064
对6种不同的复合材料板与钢板的连接接头,即单盖板胶接、螺接、混接,以及双盖板胶接、螺接、混接的连接接头进行了静力拉伸试验与数值研究。静力试验获得了接头的失效载荷、载荷-位移曲线以及失效模式,通过对比发现接头的承载能力与接头形式有很大关系。采用有限元方法获取了胶接接头中胶层应力分布,并研究了接头各设计参数如搭接长度、胶层厚度等对接头强度的影响规律。  相似文献   

16.
张燕娥 《船舶工程》1998,(3):51-53,56
本文讨论了船用双平衡环挠性陀螺仪接头的设计准则,进行了接头的刚度计算及承载能力和强度分析,从而为设计高精度挠性陀螺仪提供了重要的参考依据。  相似文献   

17.
李晓文  邵菲  朱兆一  扈喆  李平 《船舶力学》2018,22(4):454-463
文章从船舶轻量化的角度出发,提出了一种由复合材料夹芯板和增强泡沫胶接而成的新型T型连接结构,解决了船舶复合材料上层建筑内部壁板之间的连接问题。基于复合材料结构的设计原理和力学特性,设计了T型连接结构的拉伸试验和压缩试验,研究其在不同载况下的极限承载和损伤模式,证明T型连接损伤模式复杂,抗拉能力弱,尤其面板与腹板连接区的胶层是承载薄弱环节;依据试验结果验证数值计算方法,并规划3条技术路径以研究T型连接的抗拉特性,应用数值方法提取对应技术路径的应力和位移特征量,分析T型连接面板与腹板连接区的胶层几何参数对抗拉强度和重量的响应规律,获得连接区胶层几何夹角的建议取值为45°~60°,为复合材料船舶轻量化胶接结构的优化设计和实际应用提供了有益参考。  相似文献   

18.
中间过渡金属对阻尼铜与不锈钢扩散焊接头强度的影响   总被引:1,自引:0,他引:1  
利用金相显微镜、扫描电镜、电子探针及X射线衍仪射仪等,采用加中间过渡金属Ni、Cu后,铜合金CuAlBe与不锈钢lCrl8Ni9Ti扩散焊接头的结合强度进行了试验研究。结果表明,在相同条件下,采用Ni中间层的接头强度明显高于采用Cu中间层的接头强度;但当Ni箔较薄时,Al与Fe及Ni将发生相互作用,形成金属间化合物Fe2Al等,从而降低了接头性能;当温度较高时,由于Ni在Cu中的扩散速度大于Cu在Ni中的扩散速度,界面处会产生柯肯达尔效应,也导致接头强度降低。  相似文献   

19.
朱晓军  彭飞 《船舶工程》2003,25(3):67-68
通过对390MPa级船体钢焊接接头热喷铝与不喷铝疲劳对比试验,结果表明:在相同疲劳交变应力条件下,热喷铝焊接接头疲劳寿命大于不喷铝焊接接头的疲劳寿命。  相似文献   

20.
本文以SRSF501无缝药芯焊丝在船用EH36高强钢中的焊接应用为目的,研究了国产无缝药芯焊丝SRSF501在船用EH36高强钢焊接中的组织和冲击韧性。通过试验表明:SRSF501焊接EH36钢接头各区域的冲击性能均满足船级社要求;多层多道焊时,焊缝组织由粗大的柱状组织和细小的等轴晶组织组成,底层焊缝和末道焊缝柱状晶区域较大;盖面层两侧接头热影响区存在粗晶区,其它位置接头的热影响区不存在粗晶区;焊接接头中熔合线外2mm处,晶粒最细,冲击韧性最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号