共查询到19条相似文献,搜索用时 15 毫秒
1.
A mathematical model employed to analyze the global dynamics of a Steel Catenary Riser (SCR) taking into account the interaction with the seafloor and the effect of the soil reaction forces is established. The choice of soil model plays an important role for the dynamic behavior of SCRs. The riser has been modeled using flexible beam with large curvature and elastic foundation beam to describe the riser-soil interaction by means of realistic nonlinear load-deflection (P–y) curves. The study is made to improve an existing finite element numerical code for dynamic analysis of mooring lines and risers, known as CABLE 3D, which is based on a slender rod assumption. Effects of nonlinear seabed model on the dynamic behavior of SCRs under vessel cyclic perturbation have further been investigated and discussed using a realistic P–y curve to simulate soil deformation and resistance forces. The interaction model depends on several factors, such as soil strength, penetration depth and riser characteristics. The dynamic responses of the riser Touchdown Point (TDP) excited by vessel periodic heave motion are studied and the results are compared with those from the linear spring model. SCR has been perturbed by 10 regular sinusoidal cycles and the responses calculated by improved code show a number of features such as suction force mobilization, gradual increasing penetration depth, and gradual reduction of soil resistance at maximum penetration. The riser behavior at the touchdown zone (TDZ) depends on the riser top motion amplitude, nonlinear soil stiffness and suction force. The impact of the riser-soil interaction model on the dynamic behavior in the TDZ has been thoroughly studied in this paper. 相似文献
2.
A method to identify vortex-induced forces and coefficients from measured strains of a Steel Catenary Riser (SCR) undergoing vessel motion-induced Vortex-induced Vibration (VIV) is proposed. Euler–Bernoulli beam vibration equations with time-varying tension is adopted to describe the out-of-plane VIV responses. Vortex-induced forces are reconstructed via inverse analysis method, and the Forgetting Factor Least Squares (FF-LS) method is employed to identify time-varying vortex-induced force coefficients, including excitation coefficients and added mass coefficients. The method is verified via a finite element analysis procedure in commercial software Orcaflex. The time-varying excitation coefficients and added mass coefficients of an SCR undergoing vessel motion-induced VIV are investigated. Results show that vessel motion-induced VIV is excited at the middle or lower part of the SCR and in the acceleration period of in-plane velocity, where most of the excitation coefficients are positive, while during the deceleration period, the excitation coefficients becomes too small to excite VIVs. Parameter γ [1] has strong correlation with excitation coefficients. In addition, time-varying tensions contribute significantly to the variations of added mass coefficients under the condition that the ratio of dynamic top tension to pretension exceeds the range of 0.7–1.3. Moreover, chaotic behaviors are observed in vortex-induced force coefficients and are more evident with the increase of vessel motion velocity. This behavior may attribute to the randomness existing in in-plane velocity and its coupling with out-of-plane vibrations. 相似文献
3.
The most critical issue in the steel catenary riser design is to evaluate the fatigue damage in the touchdown zone accurately. Appropriate modeling of the riser-soil resistance in the touchdown zone ca... 相似文献
4.
向量式有限元法是基于向量式力学和数值计算的一种创新性的结构行为分析方法。文章采用三种弹簧模型模拟海床,将向量式有限元法用于钢悬链线立管触地段与海床土体相互作用研究中,编制相应Matlab求解程序,计算了端部施加一定位移下立管的位形和弯曲应力,并与他人基于有限差分法及ABAQUS的模拟结果进行对比,同时运用该方法分析了弹簧模型、土体刚度、土体吸力系数等参数对立管触地段变形和弯曲应力的影响。结果表明向量式有限元法在模拟静态端部位移加载下的管-土相互作用是准确和可行的,能够直接求解变形和内力,具有相对简洁性,此方法是对立管力学行为的模拟,符合实际运动变形过程。为模拟管-土相互作用提供了新方法,同时为进一步研究实际循环载荷下管-土相互作用奠定了基础。 相似文献
5.
This article studies the structural response of a 6.0” flexible pipe under pure tension considering intact and damaged conditions. In the damaged condition, several wires of the tensile armor layers are assumed to be broken. A three-dimensional nonlinear finite element (FE) model devoted to analyze the local mechanical response of flexible pipes is employed in this study. This model is capable of representing each tensile armor wire and, therefore, localized defects, including total rupture, may be adequately represented. Results from experimental tests validate the FE predictions and indicate a reduction in the axial stiffness of the pipe, a non-uniform redistribution of forces among the remaining intact wires of the damaged tensile armor layers and high stress concentrations in the wires near the broken ones. Moreover, the FE model indicates that significant normal bending stresses may arise in the pressure armor and inner carcass due to an uneven pressure distribution on these layers. Finally, the results obtained are employed to estimate the pull out capacity of the studied flexible pipe. 相似文献
6.
7.
The flexible cantilever riser, as a special form of the marine riser, can be encountered in a deep-sea mining system, where the bottom of the long vertical lifting pipeline is connected with the intermediate warehouse. The main objective of this paper is to investigate the effects of the bottom weight caused by the intermediate warehouse and the flow speed on the dynamic responses of the cantilever pipeline. A quasi-3D coupling algorithm based on the discrete vortex method and finite element method is employed to calculate the unsteady hydrodynamic forces and vortex-induced vibrations of this pipeline in the time domain, respectively. We first simulate the VIV of a long flexible riser with two fixed ends in a stepped flow to validate the feasibility of the present method. Then, systematic simulations of cross-flow VIV of the cantilever riser are carried out under a wide range of bottom weights and different current speeds. The number of the vibration mode shows the decreasing tendency with the increase of the bottom weight. In a certain range of the weight, the number of the dominant mode remains unchanged, while the vibration amplitude declines with increasing weight. An amplitude jump phenomenon can be observed when the transition of the dominant mode in two contiguous mode clusters occurs. Moreover, the higher-order modes are excited with the increase of the current speed. 相似文献
8.
Welding numerical simulation has always been a formidable challenge because of the involved complex phenomena to be modelled. The task is increasingly challenging when multi-runs welding or welding of ships is needed to be modelled. In these cases, the computational effort is so high that solving the problem via computational welding mechanics is impossible so far. Alternatively, different simplified numerical strategies were developed to overcome this issue such as those based on the inherent strain. Unfortunately, such numerical models are rarely able to capture the effects induced by a variation of the welding sequence or clamping conditions since they are solved in the elastic filed; most of them are therefore not useful to the design optimization of a welded assembly. In this scenario, a new approach is proposed to quantify the welding induced deformations that uses virtual elements to model the weld bead in the elastic-plastic filed and auxiliary elements to apply equivalent loads determined by experiments on a single welded joint. A specific inverse analysis algorithm has been developed to use the method. The model was applied to a real welded assembly in which both the welding sequence and clamping condition were varied. In addition, for the numerical validation, a novel registration algorithm has been developed to move from solid geometries to middle plane representations. Numerical results were found in good agreement with those obtained by experiments even when the welding sequence and clamping conditions are changed. 相似文献
9.
Installation complexities are one of the major challenges in the floating offshore wind turbine (OWT) industry. The modern concept introduced by the SFI-MOVE project is an effort to overcome the complexities by utilizing a low-height lifting mechanism. It is common to idealize a crane in the lifting mechanism as a rigid body since the structural deflections are smaller than the responses introduced by the other system components. However, structural flexibility can play an essential role in demanding offshore operations with smaller acceptable tolerances. In this study, lifting cranes are modeled using the finite element method and simplified by implementing equivalent 3D beam elements. Dynamic analysis is performed for various environmental conditions, and the responses of the crane structure and the OWT are calculated for each load case. This research reveals that crane structure flexibility influences the relative motion between a floating spar buoy and an OWT during mating operations. Crane structural flexibility contributes significantly to the OWT rotations. In addition, the response deviation between using rigid and flexible cranes increases as the excitation force increases. Therefore, it is recommended to consider the crane structural flexibility in the calculation when strict installation tolerances are needed. 相似文献
10.
In this paper a recently proposed formulation for the multilayered pipe beam element is extended to dynamic analysis of risers. Derivations of hydrostatic and hydrodynamic loadings due to internal and external fluid acting on each element layer are presented. Mass and damping matrices, associated to each element layer, are properly derived by adding their respective contributions to the expression of the virtual work due to external loading. The finite element implementation allows for the numerical representation of either bonded or unbonded multilayered risers, including small slip effects between layers. A number of numerical examples have been carried out and the results show the accuracy and efficiency of the new element formulation, even in large scale riser analysis. Moreover, we establish a few benchmarks using multilayered pipes and risers. 相似文献
11.
12.
Flexible pipes are key equipment for offshore oil and gas production systems, conveying fluids between the platform and subsea wells. The structural arrangement of unbonded flexible pipes is quite complex, encompassing several layers with polymeric, metallic and textile materials. Different topologies and a large amount of intricate nonlinear contact interactions between and within their components, especially because of the relative stick-slip mechanism during bending, makes numerical analysis challenging. This paper presents an alternative three-dimensional nonlinear finite element model that describes the response of flexible pipes subjected to combined axisymmetric and bending loads. To simulate the response of a flexible pipe under axial tension or compression combined with uniform curvature, an equivalent thermal loading is employed on the external sheath, which is modelled as an orthotropic thermal expansion material with temperature-independent mechanical properties. To assess the feasibility of the proposed model, the bending moment versus curvature of the finite element solution is compared with experimental results obtained in literature and good agreements are found between them. Detailed finite element results such as contact pressures, armour wire slip displacements and friction, normal and transverse bending stresses are also shown and compared with available analytical models. 相似文献
13.
This paper reports the lateral – moment bearing capacity of bucket foundations under lateral loading in sand. The Modified Mohr-Coulomb (MMC) model is adopted to capture the hardening – softening behaviour in medium dense and dense sands within a finite element (FE) modelling framework. The FE model performance is assessed against available field test data as well as analytical solutions showing a relatively good agreement. A series of parametric study is conducted to investigate the effects of bucket aspect ratio, bucket diameter, load eccentricity, vertical load and relative density of sand on the lateral - moment bearing capacity of the bucket. Comparisons are drawn between the conventional Mohr-Coulomb (MC) model and the stress dependent MMC model highlighting the role of sand dilatancy in mobilising the lateral moment capacity. Based on the FE results, a simple stepwise calculation framework is proposed for two scenarios: (i) to predict the lateral - moment bearing capacity of the bucket if the bucket dimensions are known, and (ii) to design the bucket dimensions for a known required bucket capacity. 相似文献
14.
Jan Inge Dalane 《Marine Structures》1997,10(8-10):611-628
One of the most important uncertainties associated with fatigue damage of TLP tethers is the uncertainty related to fatigue loading. Higher–order load effects are important and such effects are very complicated to determine numerically. The Heidrun TLP was installed in the summer of 1995 and for this platform the forces in the top of the tethers are measured during the operational phase. In this paper the results of these measurements are discussed and compared with numerical calculations. It is shown how the measurements of fatigue loading can be used to improve the fatigue reliability and reduce the need for in-service inspections. 相似文献
15.
This study investigates the low-cycle fatigue behavior of mooring chains high-strength steel grade R4 under different strain amplitudes and strain ratios at room temperature. A fatigue test program has been carried out on small low cycle fatigue specimens cut from large mooring chains. The experimental results characterize the cyclic stress-strain relationship, the mean stress relaxation behavior, and the cyclic plasticity parameters of the material. Strain energy density is correlated with fatigue life through a simple power-law expression and very well represented by Basquin-Coffin-Mansion relationship. Further, a non-linear elastic-plastic material model is calibrated to the experimental stress-strain curves and used for the estimation of energy dissipation in the specimens under applied cyclic loads. The predicted fatigue life using the calibrated material parameters demonstrates a close agreement with the experimental fatigue life. Numerical simulations are carried out to analyze local plastic straining and assess crack initiation at the pit site of corroded mooring chains considering the multiaxial stress state. An energy-based approach is employed to estimate the number of cycles needed for a crack to initiate from an existing corrosion pit. 相似文献
16.
《船舶与海洋工程学报》2024,23(2):406-416
The tripod foundation(TF)is a prevalent foundation configuration in contemporary engineering practices.In comparison to a single pile,TF comprised interconnected individual piles,resulting in enhanced bearing capacity and stability.A physical model test was conducted within a sandy soil foundation,systematically varying the length-to-diameter ratio of the TF.The investigation aimed to comprehend the impact of altering the height of the central bucket on the historical horizontal bearing capacity of the foundation in saturated sand.Additionally,the study scrutinized the historical consequences of soil pressure and pore water pressure surrounding the bucket throughout the loading process.The historical findings revealed a significant enhancement in the horizontal bearing capacity of the TF under undrained conditions.When subjected to a historical horizontal loading angle of 0° for a single pile,the multi-bucket foundation exhibited superior historical bearing capacity compared to a single-pile foundation experiencing a historical loading angle of 180° under pulling conditions.With each historical increment in bucket height from 150 mm to 350 mm in 100 mm intervals,the historical horizontal bearing capacity of the TF exhibited an approximately 75%increase relative to the 150 mm bucket height,indicating a proportional relationship.Importantly,the historical internal pore water pressure within the bucket foundation remained unaffected by drainage conditions during loading.Conversely,undrained conditions led to a historical elevation in pore water pressure at the lower side of the pressure bucket.Consequently,in practical engineering applications,the optimization of the historical bearing efficacy of the TF necessitated the historical closure of the valve atop the foundation to sustain internal negative pressure within the bucket.This historical measure served to augment the historical horizontal bearing capacity.Simultaneously,historical external loads,such as wind,waves,and currents,were directed towards any individual bucket within the TF for optimal historical performance. 相似文献
17.
The accurate assessment of the remaining strength of corroded pipes is a subject that has been increasingly investigated over the past decades. This is because of the risk of significant social, economic, and environmental effects that may be caused by an accident. The finite element method has been successfully used to predict the collapse pressure considering external load. It was also used in this study. The literature primarily focused on the corroded pipes subjected to internal pressure. In this study, the out-of-roundness (ovalization) of the pipe was considered to evaluate the collapse pressure. Uncertainties should be incorporated into a computational model to assess the reliability of corroded pipes. Three methods for evaluation of the probability of failure were used: the first-order reliability method (FORM), traditional Monte Carlo (MC), and a new proposed methodology that combines MC results with the kernel density estimation method (MCkde). The probability of failure of ovalized corroded pipes subject to external pressure was computed. The results exhibited a good agreement between FORM and MCkde method. The statistical importance of each random variable was observed and the results were compared with those from intact ovalized pipes. The computation cost of the MC method with numerical simulation limits its use to the application under study. Solutions using the FORM and MCkde methods exhibited good agreement with those of the full MC method. However, the computational effort of the latter was independent of the stochastic dimension, and it was a derivative-free method. As expected, in general, the solutions based on empirical methods were conservative. 相似文献
18.
The Powell's method was developed to determine the optimal stiffness and damping of multi-tuned mass dampers (MTMD) in offshore wind turbine (OWT) support structures under fatigue loads. Numerical examples indicated that the Powell's method results are always better than those using MTMD formulations. With the exception of the blade passing (3P) frequency, it was found in this work that a positive integer (n) multiple of the 3P frequency will also result in a large wind-induced vibration, which can be excited by the frequency of the first structural vertical rotation mode and will cause significant fatigue damage. The first translation mode TMD installed at the tower top is efficient to increase fatigue life at the tower and brace connections, but it cannot reduce fatigue damage at the column and brace connections below the platform. The second translation mode TMD can reduce fatigue damage resulting from large wave loads and thus increase the fatigue life of the braces and columns. The mode-3 TMD with a reduction in the 3(3P) vertical rotation can effectively increase the fatigue life of the braces and columns. Thus, the appropriate use of these TMDs can be effective for the fatigue problem of OWT support structures. 相似文献
19.
Metallic strip flexible pipes (MSFP), a relatively new style of unbonded flexible pipes, are considered as an attractive alternative to traditional submarine pipes. During its reeling operation, it will inevitably confront various complicated loads, which may affect the integrity and safety of MSFP's utilization. In this paper, the tension-extension and moment-curvature relation of MSFP were obtained by laboratorial tests. The mechanical properties were then imported into the global model established in ABAQUS. The finite element model was adopted to predict the deformation and mechanical responses of MSFP during the operation process. Besides, the effects of reeling length, the diameter of the coiling drum, and the pulling force were discussed. The obtained conclusions will provide some references for optimizing MSFP design and preventing possible damage in the reeling operation. 相似文献