首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Wave-induced vessel motion prediction plays a critical role in ensuring safe marine operations. The operational limiting criteria can usually be calculated by applying presumed linearized vessel motion transfer functions based on the specified vessel loading condition, which may deviate from the real vessel condition when the operation is executed. Reducing the uncertainties of the onboard vessel loading condition can therefore improve the accuracy of vessel motion prediction and hence improve the safety and cost-efficiency for marine operations. However, parameters related to the onboard vessel loading condition can be difficult to measure directly, such as the center of gravity and moments of inertia. In addition, the hydrodynamic viscous damping terms are always subject to significant uncertainties and sometimes become critical for accurate vessel motion predictions. A very promising algorithm for the tuning of these important uncertain vessel parameters based on the unscented Kalman filter (UKF) that uses onboard vessel motion measurements and synchronous wave information was proposed and demonstrated previously by application to synthetic data. The present paper validates the UKF-based vessel seakeeping model tuning algorithm by considering measurements from model-scale seakeeping tests. Validation analyses demonstrate rational tuning results. The observed random errors and bias in relation to the measurement functions due to the applied simplification and linearization in the seakeeping simulations can lead to biased tuning. The importance of designing the state space and the measurement space is demonstrated by case studies. Due to the nonlinear relationship between the uncertain vessel parameters and the vessel motions, the tuning is shown to be sensitive to the mean state vector and selection of the surrounding sigma points.  相似文献   

2.
Floating structures oscillate in waves, where these wave-induced motions may be critical for various marine operations. An important consideration is thereby given to the sea states at the planning and operating stages for an offshore project. The most important information extracted from a sea state is the directional wave spectrum, indicating wave direction, significant wave height, and wave spectrum peak period. Among several available methods of measuring and estimating the directional wave spectrum, the wave buoy analogy technique based on vessel motion responses is an in situ and almost real-time solution without extra costs of devices. If the forms of the wave spectra are not predefined in the estimation, the method is called a nonparametric approach. Its most remarkable advantage is the flexible form, but the smoothness should be regulated. After the discrete Fourier transform has been applied to the measured vessel motions, smoothing is necessary. However, this process results in disturbed vessel cross-spectra and a lowpass characteristic of the windowing function. This paper presents a nonparametric approach for directional wave spectrum estimation based on vessel motion responses. It introduces novel smoothness constraints using Bézier surface and includes a more robust estimate using L1 optimization. Both techniques are applied to the wave buoy analogy for the first time. Numerical simulations are conducted to verify the proposed algorithm.  相似文献   

3.
This article is about the use of measured wave-induced vessel motions for estimation of ocean wave spectra by application of the wave buoy analogy. In the study, data from a larger, in-service container ship is considered. The estimation of wave spectra, equivalently sea state parameters, is based on measurements from, respectively, a gyro and two accelerometers leading to the simultaneous use of the pitching motion together with the horizontal and vertical accelerations in a position close to the forward perpendicular. The study of in-service data leads to contemplations about the vessel's advance speed, as the possible existence of sea current means that speed-over-ground (SOG) and speed-through-water (STW) will be different. The article discusses aspects related to advance speed in the context of the wave buoy analogy, and a smaller sensitivity study is conducted. Preceding to the sensitivity study, a comparison is made between sea state estimates by the wave buoy analogy and estimates obtained from a hindcast study. The article shows an acceptable agreement between the two sets of estimates. Following, the main conclusion from the sensitivity study on advance speed is that errors and uncertainties in the speed log have an effect on the estimates of the wave buoy analogy. In fact, the effect can be severe if reliable STW measurements are not available. In the final part, the article includes a few discussions about (non)stationary conditions in the context of the wave buoy analogy, and, although the effect on results is not necessarily detrimental, care must be shown when the wave buoy analogy is applied during in-service conditions.  相似文献   

4.
林叶锦  任光 《中国造船》2003,44(4):73-79
设计了一种基于RBF网络和遗传优化的船舶操纵模糊控制器。首先讨论了传统模糊控制器应用于船舶操纵控制的不足,然后根据模糊系统在特定情况下与RBF网络具有等价关系的特点,采用具有加权平均输出的RBF网络构造了一个船舶操纵模糊控制器,有效地消除了小偏差范围的舵角抖动现象。在此基础上,根据船舶操纵的特点提出了一种尺度变换因子的自整定方法,并采用遗传算法对自整定过程中的可变参数进行优化,以使控制器能够适应实时控制过程中的时变性和不确定性,保持良好的控制性能。最后针对某大型船舶的非线性模型,采用Matlab 6.1的Simulink工具进行了转艏操纵仿真试验,获得了满意结果。  相似文献   

5.
为缩短波浪补偿装置平台的研发周期,以某型号风电安装船为研究对象,根据我国海洋部门提出的东海区域谱密度公式,运用Matlab软件分别模拟出6级海况下的波普密度曲线、波倾角变化曲线、该型号风力发电船的横摇、纵摇和升沉运动曲线.具体以风力发电船在6级海况下的横摇、纵摇和升沉运动范围约束平台机构的运动范围,采用遗传算法对平台机构进行优化,分别设定不同机构参数为目标函数进行局部优化,最终为平台结构的合理化设计提供数据支持.  相似文献   

6.
船用锂电池是新能源船舶的重要设备,如何精确的估计锂电池的荷电状态以及根据船舶运行工况进行对锂电池组的健康管理是保障船舶安全经济运营的关键。通过Vmin无迹卡尔曼滤波法对船用锂电池组的荷电状态(SOC)估计,仿真验证了Vmin无迹卡尔曼滤波法在估算电池组SOC时有较高精度;同时,结合船舶运行工况研发锂电池组健康管理策略,对船用锂电池组的SOC,单体电压,电流,光伏发电功率多参数综合分析,把电池状态分为健康,亚健康,不健康三种状态。实船运行表明,该电池组健康管理能保障锂电池组工作在安全范围内,有效促进船舶的安全运行。  相似文献   

7.
8.
无迹卡尔曼滤波可以在状态估计中滤去噪声干扰,已经被广泛应用于动力定位系统中.针对复杂海洋情况下动力定位系统需要准确、及时地估计当前时刻的状态而无迹卡尔曼滤波无法跟踪状态突变的问题,为此文章提出了一种自适应无迹卡尔曼滤波.通过及时判断状态值突变并适当调整后验均方差矩阵,可有效地跟踪船舶状态并减小实际位置与定点位置的偏差.仿真实验证明了算法的有效性.  相似文献   

9.
船舶在海上航行时受到海风、海浪和海流等环境扰动作用,这造成在不同航速下船舶动力学模型的参数不确定性,本文对船舶本体运动和风浪流干扰进行建模,提出一种基于分数阶PIλDμ的抑制风浪干扰的的航向控制算法,并与传统 PID算法进行对比,针对某型船舶动力学模型在6级海风和5级海浪海况下进行对比数字仿真。仿真结果表明,该算法在不同航速下具有较好的控制品质和鲁棒性,对风浪干扰具有良好的适应性,可应用于船舶的航向控制,易于工程实现。  相似文献   

10.
[目的]针对无人艇(USV)的模型不确定性和未知海洋环境扰动,提出一种基于扩张状态观测器(ESO)的双桨推进无人艇抗干扰目标跟踪控制算法.[方法]在运动学层级,设计基于平行接近制导原理的目标跟踪制导律;在动力学层级,针对模型不确定性和未知环境扰动,设计基于ESO的纵荡速度和艏摇角速度自抗扰控制律,以减小模型不确定性和环...  相似文献   

11.
Lifting operation though the wave splash zone is challenging. Careful numerical analysis in the design phase is needed to minimize associated risks. This study addresses numerical modeling and analysis of the splash zone lowering of a large subsea spool. A typical offshore construction vessel is used for the operation. The objective is to compare the effects from different numerical methods and parameters on the allowable sea states and the operability. These methods and parameters include wave short-crestedness, shielding effects from the vessel, wave direction and wave seed number. A coupled numerical model of the spool-vessel system is established in SIMO program, which is a simulation tool for marine operations. Slamming and submergence-dependent loads on the spool during the transient lowering process are calculated. A large number of time-domain simulations has been performed to derive the allowable sea states. The operational criteria for assessment of the sea states include slack sling, snap loads in wires and clearance between spool and the vessel. Operability analysis of the operation at one reference site in the Barent Sea is established using 50-year hindcast data. The influences from different methods on the allowable sea states and the operability are compared and discussed in detail.  相似文献   

12.
The paper focuses on the problem of control law optimization for marine vessels working in a dynamical positioning (DP) regime. The approach proposed here is based on the use of a special unified multipurpose control law structure constructed on the basis of nonlinear asymptotic observers, that allows the decoupling of a synthesis into simpler particular optimization problems. The primary reason for the observers is to restore deficient information concerning the unmeasured velocities of the vessel. Using a number of separate items in addition to the observers, it is possible to achieve desirable dynamical features of the closed loop connection. The most important feature is the so-called dynamical corrector, and this paper is therefore devoted to solving its optimal synthesis in marine vessels controlled by DP systems under the action of sea wave disturbances. The problem involves the need for minimal intensity of the control action determined by high frequency sea wave components. A specialized approach for designing the dynamical corrector is proposed and the applicability and effectiveness of the approach are illustrated using a practical example of underwater DP system synthesis.  相似文献   

13.
针对速度矢量不可测、动态参数不确定以及具有未知扰动和磁滞特性的水面船舶系统,提出一种基于径向基函数神经网络的自适应反馈轨迹跟踪控制方案。根据船舶的状态矢量,利用高增益观测器估计水面船舶系统的不可测速度矢量,并通过一个函数描述间隙类磁滞对系统的影响。利用径向基函数神经网络的逼近能力和反步法设计控制器,基于李雅普诺夫稳定性理论,验证所设计控制器的稳定性,证明系统所有的闭环信号都是半全局一致有界的。通过仿真验证了控制器的有效性。  相似文献   

14.
This paper focuses on the problem of control law optimization for marine vessels working in a dynamical positioning(DP) regime. The approach proposed here is based on the use of a special unified multipurpose control law structure constructed on the basis of nonlinear asymptotic observers, that allows the decoupling of a synthesis into simpler particular optimization problems. The primary reason for the observers is to restore deficient information concerning the unmeasured velocities of the vessel. Using a number of separate items in addition to the observers, it is possible to achieve desirable dynamical features of the closed loop connection. The most important feature is the so-called dynamical corrector, and this paper is therefore devoted to solving its optimal synthesis in marine vessels controlled by DP systems under the action of sea wave disturbances. The problem involves the need for minimal intensity of the control action determined by high frequency sea wave components. A specialized approach for designing the dynamical corrector is proposed and the applicability and effectiveness of the approach are illustrated using a practical example of underwater DP system synthesis.  相似文献   

15.
针对标准粒子滤波算法存在的粒子退化问题,提出了一种改进的粒子滤波算法,该算法将不敏卡尔曼滤波算法(UKF)、线性优化的思想和基本粒子滤波算法相结合,运用不敏卡尔曼滤波算法获得重要性概率密度函数,提高了粒子的使用效率;运用线性优化的思想,保证了所有粒子都以一定的概率对状态估计作出贡献,提高了粒子的多样性。仿真结果表明,改进的算法很好的解决了基本粒子滤波存在的粒子退化问题,具有更高的状态估计精度。  相似文献   

16.
根据沿海采矿的工况条件,研发一种沿海海域采掘矿砂的采矿船。该船主台车定位桩系统带波浪补偿功能,可满足在沿海较恶劣海况下的采矿作业。本项目的实施,将大大提升疏浚工程领域和采矿领域的先进技术、我国海洋采矿产业的系统研发和产业化转化能力,加速我国海工装备产品的结构调整,创立具有国际影响力的自主品牌,对增强我国海工装备的国际市场竞争力具有十分重要的作用。  相似文献   

17.
针对我国现有渔船标准化建设中遇到的船体型线优化难的问题,提出一种基于集成仿真优化技术的船体型线优化方法,并以一艘灯光渔船的兴波阻力性能优化为例,通过半参数化方法提取10个控制参数用于艏部型线的变换,兴波阻力采用势流理论方法进行评估,并采用Sobol算法与梯度搜索算法相结合的优化算法。基于上述的船体型线优化方法最终得到兴波阻力性能最优的船型,优化结果表明,文中提出的船体优化技术是有效的,有助于加快推进渔船船型的标准化建设。  相似文献   

18.
The objective of this work is the analytical synthesis problem for marine vehicles autopilots design. Despite numerous known methods for a solution, the mentioned problem is very complicated due to the presence of an extensive population of certain dynamical conditions, requirements and restrictions, which must be satisfied by the appropriate choice of a steering control law. The aim of this paper is to simplify the procedure of the synthesis, providing accurate steering with desirable dynamics of the control system. The approach proposed here is based on the usage of a special unified multipurpose control law structure that allows decoupling a synthesis into simpler particular optimization problems. In particular, this structure includes a dynamical corrector to support the desirable features for the vehicle's motion under the action of sea wave disturbances. As a result, a specialized new method for the corrector design is proposed to provide an accurate steering or a trade-off between accurate steering and economical steering of the ship. This method guaranties a certain flexibility of the control law with respect to an actual environment of the sailing;its corresponding turning can be realized in real time onboard.  相似文献   

19.
基于深度学习的水面无人船前方船只图像识别方法   总被引:1,自引:0,他引:1  
建立基于图像识别系统的水面无人船感知平台,采集内河船舶图片数据库建立船只检测单层多尺度深度学习(Single Shot Multibox Detector,SSD)框架,通过使用预训练模型参数调优并微调分类框架实现较高的内河船舶检测准确度。试验结果表明,不同天气状况下的识别算法的查全率和查准率均能保持在70%以上  相似文献   

20.
The Floating Production Storage and Offloading Unit (FPSO) is an offshore vessel that produces and stores crude oil prior to tanker transport.Robust prediction of extreme hawser tensions during Floating Production Storage and Offloading (FPSO) operation is an important safety concern. Excessive hawser tension may occur during offloading operations, posing an operational risk. In this paper, AQWA has been used to analyze vessel response due to hydrodynamic wave loads, acting on a specific FPSO vessel under actual sea conditions. Experimental validation of numerical results has been discussed as well.This paper advocates methodology for estimating extreme response statistics, based on simulations (or measurements). The modified ACER (averaged conditional exceedance rate) method is presented in brief detail. Proposed methodology provides an accurate extreme value prediction, utilizing all available data efficiently. In this study the estimated return level values, obtained by ACER method, are compared to the corresponding return level values obtained by Gumbel method. Based on the overall performance of the proposed method, it is concluded that the improved ACER method can provide more robust and accurate prediction of the extreme hawser tension.Data declustering issue has been addressed. Paper highlights ability of ACER method to account for a set of varying sea state probabilities, as required in engineering long term statistical analysis.Described approach may be well used at the vessel design stage, while defining optimal vessel parameters that would minimize potential FPSO hawser tension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号