首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exploration for renewable and clean energies has become crucial due to environmental issues such as global warming and the energy crisis. In recent years,floating offshore wind turbines(FOWTs) have attracted a considerable amount of attention as a means to exploit steady and strong wind sources available in deep-sea areas. In this study, the coupled aero-hydrodynamic characteristics of a spar-type 5-MW wind turbine are analyzed. An unsteady actuator line model(UALM) coupled with a twophase computational fluid dynamics solver naoe-FOAM-SJTU is applied to solve three-dimensional Reynolds-averaged NavierStokes equations. Simulations with different complexities are performed. First, the wind turbine is parked. Second, the impact of the wind turbine is simplified into equivalent forces and moments. Third, fully coupled dynamic analysis with wind and wave excitation is conducted by utilizing the UALM. From the simulation, aerodynamic forces, including the unsteady aerodynamic power and thrust, can be obtained, and hydrodynamic responses such as the six-degrees-of-freedom motions of the floating platform and the mooring tensions are also available. The coupled responses of the FOWT for cases of different complexities are analyzed based on the simulation results. Findings indicate that the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform are obvious. The aerodynamic loads have a significant effect on the dynamic responses of the floating platform, and the aerodynamic performance of the wind turbine has highly unsteady characteristics due to the motions of the floating platform. A spar-type FOWT consisting of NREL-5-MW baseline wind turbine and OC3-Hywind platform system is investigated. The aerodynamic forces can be obtained by the UALM. The 6 DoF motions and mooring tensions are predicted by the naoe-FOAM-SJTU. To research the coupling effects between the aerodynamics of the wind turbine and the hydrodynamics of the floating platform, simulations with different complexities are performed. Fully coupled aero-hydrodynamic characteristics of FOWTs, including aerodynamic loads, wake vortex, motion responses, and mooring tensions, are compared and analyzed.  相似文献   

2.
本文采用FAST软件对一种浅吃水单柱式浮式风机系统的动力学特性进行了研究.这一浮式风机适用于能源成本相对合理、水深为150 m的海域.本文首先讨论了这一浮式风机系统和OC3-Hywind系统在动力学特性方面的差异,然后研究了风尤其是湍流风对系统动力学特性的影响,最后对这一系统在多种载荷状况下的动力学行为进行了详尽的分析.研究结果表明:湍流风会在系统固有频率附近引起显著的激励;纵荡和纵摇运动取决于风轮推力,它们通过风轮推力和相对风速之间的联系建立起耦合关系;Spar平台的艏摇运动主要取决于平台横摇时由风轮推力引起的艏摇力矩.  相似文献   

3.
深水半潜式钻井平台动力定位建模与仿真   总被引:1,自引:1,他引:0  
针对海洋结构物的过程对象模型中水动力系数较多且较难获得准确的数值,运用控制对象模型代替过程对象模型来模拟海洋平台动力定位时的动态响应.采用模块法对半潜式平台主要的水上建筑以及水下建筑进行了不同标准构件模块的离散,通过叠加各离散构件的载荷获得风与海流的总载荷.应用所建立的模型对981钻井平台在待机工况与作业工况进行了动力定位的时域仿真,仿真结果表明模型切实可行,可以用于动力定位的实时模拟与系统调试.  相似文献   

4.
基于滑移网格技术计算螺旋桨水动力性能研究   总被引:2,自引:0,他引:2  
张漫  黎胜 《船海工程》2013,(5):25-29
基于RANS方程的CFD软件数值模拟螺旋桨定常和非定常的水动力性能.定常计算采用多重参考系MRF模型,分别采用标准k-ε的湍流模型,RNG k-ε湍流模型和Reliable k-ε湍流模型模拟在不同进速系数时的推力系数和转矩系数.将模拟的数值结果与试验值相比较,计算结果表明,采用Reliable k-ε湍流模型计算出的推力系数与转矩系数与试验值基本吻合,并以该结果为初始场,通过滑移网格技术,采用单机并行计算螺旋桨非定常水动力性能.相较于定常计算结果更加接近试验值,说明滑移网格技术具有更高的精准度,更加适用于计算螺旋桨的水动力性能.  相似文献   

5.
Environmental effects have an important influence on Offshore Wind Turbine (OWT) power generation efficiency and the structural stability of such turbines. In this study, we use an in-house Boundary Element (BEM)—panMARE code—to simulate the unsteady flow behavior of a full OWT with various combinations of aerodynamic and hydrodynamic loads in the time domain. This code is implemented to simulate potential flows for different applications and is based on a three-dimensional first-order panel method. Three different OWT configurations consisting of a generic 5 MW NREL rotor with three different types of foundations (Monopile, Tripod, and Jacket) are investigated. These three configurations are analyzed using the RANSE solver which is carried out using ANSYS CFX for validating the corresponding results. The simulations are performed under the same environmental atmospheric wind shear and rotor angular velocity, and the wave properties are wave height of 4 m and wave period of 7.16 s. In the present work, wave environmental effects were investigated firstly for the two solvers, and good agreement is achieved. Moreover, pressure distribution in each OWT case is presented, including detailed information about local flow fields. The time history of the forces at inflow direction and its moments around the mudline at each OWT part are presented in a dimensionless form with respect to the mean value of the last three loads and the moment amplitudes obtained from the BEM code, where the contribution of rotor force is lower in the tripod case and higher in the jacket case and the calculated hydrodynamic load that effect on jacket foundation type is lower than other two cases.  相似文献   

6.
文章采用了空气动力、水动力、控制与弹性完全耦合的时域模拟方法研究了张力腿式浮式风机平台的动力响应.水动力载荷的计算采用了三维势流理论与Morison公式.空气动力载荷的计算采用了叶素动量理论和广义动态尾流理论.利用FAST软件得到了张力腿式浮式风机平台响应的时域结果,并分析了其动力响应特性.建立了描述平台纵荡运动的非线性微分方程,并采用了摄动方法求得其近似解,解释了纵荡运动中由非线性粘性效应引起的高频响应.对数值模拟结果的分析表明高频的响应分量对平台的动力性能有显著的影响.  相似文献   

7.
Floating offshore wind turbines are a novel technology, which has reached, with the first wind farm in operation, an advanced state of development. The question of how floating wind systems can be optimized to operate smoothly in harsh wind and wave conditions is the subject of the present work. An integrated optimization was conducted, where the hull shape of a semi-submersible, as well as the wind turbine controller were varied with the goal of finding a cost-efficient design, which does not respond to wind and wave excitations, resulting in small structural fatigue and extreme loads.The optimum design was found to have a remarkably low tower-base fatigue load response and small rotor fore-aft amplitudes. Further investigations showed that the reason for the good dynamic behavior is a particularly favorable response to first-order wave loads: The floating wind turbine rotates in pitch-direction about a point close to the rotor hub and the rotor fore-aft motion is almost unaffected by the wave excitation. As a result, the power production and the blade loads are not influenced by the waves. A comparable effect was so far known for Tension Leg Platforms but not for semi-submersible wind turbines. The methodology builds on a low-order simulation model, coupled to a parametric panel code model, a detailed viscous drag model and an individually tuned blade pitch controller. The results are confirmed by the higher-fidelity model FAST. A new indicator to express the optimal behavior through a single design criterion has been developed.  相似文献   

8.
Several floating wind turbine designs whose hull designs reflect those used in offshore petroleum industry have emerged as leading candidates for the future development of offshore wind farms. This article presents the research findings from a model basin test program that investigated the dynamic response of a 1:50 scale model OC3 spar floating wind turbine concept designed for a water depth of 200 m. In this study the rotor was allowed to rotate freely with the wind speed and this approach eliminated some of the undesirable effects of controlling wind turbine rotational speed that were observed in earlier studies. The quality of the wind field developed by an array of fans was investigated as to its uniformity and turbulence intensity. Additional calibration tests were performed to characterize various components that included establishing the baseline wind turbine tower frequencies, stiffness of the delta type mooring system and free decay response behaviour. The assembled system was then studied under a sequence of wind and irregular wave scenarios to reveal the nature of the coupled response behaviour. The wind loads were found to have an obvious influence on the surge, heave and pitch behaviour of the spar wind turbine system. It was observed from the experimental measurements that bending moment at the top of the support tower is dominated by the 1P oscillation component and somewhat influenced by the incoming wave. Further it was determined that the axial rotor thrust and tower-top shear force have similar dynamic characteristics both dominated by tower’s first mode of vibration under wind-only condition while dominated by the incident wave field when experiencing wind-wave loading. The tensions measured in the mooring lines resulting from either wave or wind-wave excitations were influenced by the surge/pitch and heave couplings and the wind loads were found to have a clear influence on the dynamic responses of the mooring system.  相似文献   

9.
宋娜  刘昆 《船舶工程》2020,42(4):137-143
以DeepCwind海上风机为研究对象,利用有限元软件ANSYS AQWA进行风机频域水动力数值仿真分析,得到水动力参数以及幅频响应曲线,将得到的水动力参数导入到FAST软件中,对风机气动-水动-锚泊系统的时域耦合运动分析。在此基础上,讨论了气动载荷对于半潜式风机运动响应的影响。结果表明,气动载荷对于半潜式风机运动响应的影响较大且不可忽略,横摇,横荡以及首摇运动随着气动载荷的增大而增大,垂荡运动随着气动载荷的增大而减小,风作用在叶片上所产生的气动阻尼削弱了垂荡运动,增强了横荡、横摇和首摇运动。  相似文献   

10.
陈前  付世晓  邹早建 《船舶力学》2012,16(4):408-415
支撑结构设计是大型海上风电机组设计的重要部分。文章分析了海上风电机组的各种环境载荷,并以3MW风力机组为例计算其所受环境载荷,包括作用在支撑结构顶端的由风机叶轮转动引起的水平轴向力、作用在塔筒上的风载荷以及作用在基础上的海流、海浪载荷,并采用非线性弹簧来模拟基础与海底土层之间的相互作用。在考虑风轮影响情况下,利用有限元法对支撑结构进行了模态分析。最后,分析了环境载荷作用下支撑结构的动态响应。计算结果表明,在对海上风力发电机组进行动态响应计算时,环境载荷之间的相互耦合作用不能忽略。  相似文献   

11.
自升式平台风载荷的空气动力学干扰研究   总被引:1,自引:0,他引:1  
风载荷是白升式平台的主要控制载荷,现行规范在计算风载荷时主要采用面积投影法,不考虑空气动力学干扰的影响,结果偏于保守。以自主研发的122m(400ft)自升式平台为例,通过风洞实验得到其各风向角下的干扰因子伊。在此基础上,采用求解RANS方程的方法,结合k—ε湍流模型对风载荷的空气动力学干扰现象进行数值模拟,所得伊值与实验结果吻合良好,揭示了这种干扰现象对自升式平台风载荷的影响。  相似文献   

12.
船用螺旋桨桨叶应力数值计算   总被引:1,自引:0,他引:1  
综合运用计算流体力学(CFD)与有限元分析(FEA)方法对船用螺旋桨桨叶应力进行数值模拟和分析。采用CFD方法对设计工况与非设计工况的敞水特性进行数值模拟;将CFD数值模拟所得的空间水动力作为外部载荷,采用有限元方法对桨叶应力进行计算分析。以5叶侧斜桨为算例,得到的推力系数、转矩系数与敞水试验值具有较好的一致性,得到的桨叶应力结果与理论分析相吻合,本方法可对桨叶应力进行准确的数值预报。  相似文献   

13.
王志勇  范佘明  孙群  张晨亮 《船舶》2019,30(3):11-20
基于OpenFOAM 软件平台,采用改进的延迟分离涡模拟(IDDES)模型,结合滑移网格方法,对一组对转桨和对转舵桨的水动力性能进行数值预报,并利用快速傅里叶变换(FFT)对推力系数进行频谱分析。对转桨数值计算结果与模型试验结果比较,推力、扭矩系数以及推进器效率的误差分别在3%、2%和5%左右,验证了该数值方法的可行性。对转舵桨数值计算结果提示:压差阻力是吊舱和立柱阻力的主要成分,在立柱的前端存在回流,对立柱的优化设计可以从这两方面入手;立柱和吊舱的存在能够减小轴承力导致的振动。  相似文献   

14.
深水SPAR风机系统全耦合动力响应分析研究   总被引:1,自引:0,他引:1  
文章采用联合开发的计算程序对深水SPAR风机的浮体、锚泊和风机各子系统进行了水—气动力的全耦合数值分析,研究了深水浮式风机系统的动力响应特点。浮体水动力计算采用基于二阶精度的混合波浪模型(Hybrid Wave Model)的MORISON公式,锚泊系统采用细长杆理论通过非线性有限元方法实现,风机系统的空气动力分析采用基于多体气动弹性理论的FAST模块。以浮体控制方程为主体,通过模块间的载荷与位移传递在每个时间步上迭代求解,形成完全耦合的时域分析方法。通过对NREL的5MW SPAR风机系统在随机海况下的水动力响应分析,验证了该方法的有效性,并分析了浮式风机子系统间的混合动力作用。  相似文献   

15.
浮式海上风力机运动性能和锚泊系统(英文)   总被引:2,自引:0,他引:2  
The development of offshore wind farms was originally carried out in shallow water areas with fixed(seabed mounted) structures.However,countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas.The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform.This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine(FOWT) system.The wind turbine was modeled as a wind block with a certain thrust coefficient,and the hydrodynamics and mooring system dynamics of the platform were calculated by SESAM software.The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined.The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.  相似文献   

16.
[Objective]This paper aims to suppress the adverse effects of tip clearance flow on the hydrodynamic performance and unsteady excitation force of a pump-jet propulsor. [Method]As for the pre-swirl stator pump-jet propulsor, an annular flexible seal structure closely matched with a rotor tip ring is used to study the validity of suppressing the clearance flow on the rotor tip. The rotor thrust and torque of the propulsor are measured by keeping the shroud approximately rigidly fixed, enabling the rotor open water efficiency to be obtained. In addition, the point of cavitation inception at each design condition is observed and recorded carefully with the help of a high-power stroboscope, and the cavitation inception curves of the propulsor with/without tip clearance are obtained through calculation. Finally, tests of shaft vibration acceleration on the pump-jet propulsor with/without tip clearance are conducted under conditions of cavitation and non-cavitation in order to evaluate the effects of diminishing tip clearance. [Results]The results show that the thrust and torque of the rotor of the pump-jet propulsor with a flexible seal structure are significantly increased, which in turn renders open water efficiency significantly increased at low and medium advance coefficients, unchanged near the design point and slightly decreased at the high advance coefficient. Moreover, the cavitation performance of the pump-jet propulsor without clearance is better at a wide range of advance coefficient, 0.85 相似文献   

17.
This paper investigates the hydrodynamic characteristics of the rectilinear motion of a robotic fish underwater vehicle. This 2-joint, 3-link multibody vehicle model is biologically inspired by a body caudal fin carangiform fish propulsion mechanism. Navier–Stokes equations are used to compute the unsteady flow fields generated due to the interaction between the vehicle and the surrounding incompressible and Newtonian fluid (water) environment. The NACA 0014 airfoil aerodynamic profile has been designed to boost the swimming efficiency by reducing drag as the vehicle undergoes an undulatory/oscillatory motion. Using the Lighthill slender body model, a traveling wave mathematical function is defined to undulate the robotic fish posterior (caudal) region while the motion tracking is carried out by dynamic meshing technique. The results obtained show that though the net lift force approaches to zero, the net thrust or negative drag coefficient maintains a finite value dependent on kinematic parameters like tail beat frequency (TBF) and amplitude span (AS) at a given propulsive wavelength and the forward velocity of the vehicle. The results reveal the effects of TBF and AS on the coefficient of drag friction and the thrust force. Drag coefficients obtained from the simulations are compared and validated with the experimental results. The hydrodynamic results are found to be similar to the kinematic study results and suggest that TBF and AS play the most effective roles in the bioinspired propulsion technique. Relation of these parameters with propelling thrust force and forward velocity is also in conjunction over a given range of TBF and AS values.  相似文献   

18.
半潜式钻井支持平台在不规则波中的时域耦合分析   总被引:1,自引:0,他引:1  
基于三维势流理论和莫里森方程,运用水动力软件AQWA,计算半潜式钻井支持平台的水动力特性。同时运用时域耦合方法,计算了风、浪、流共同作用下,半潜式钻井支持平台在三种工况(迎浪、斜浪和横浪)下的运动响应及系泊系统动力响应。时域耦合分析结果验证了该钻井支持平台满足规范要求。  相似文献   

19.
由于冰荷载研究的限制,冰区自升式钻井平台尚未形成基于动冰力响应分析的结构设计。为了合理地开展自升式平台结构的抗冰概念设计与安全评价研究,冰荷载下自升式钻井平台的动力响应分析是十分必要的。该文首先分析该类柔性结构在动冰荷载下的动力特性;其次,结合开展的自升式平台冰荷载模型实验研究,明确带齿条桩腿的自升式平台冰荷载作用形式;最后,对渤海某自升式钻井平台在典型冰况下进行冰振动力响应分析。文中的研究对冰区自升式钻井平台抗冰设计及冰振安全评估提供了合理的参考。  相似文献   

20.
A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of accumulative chord length cubic parameter spline theory and analytic method was adopted for generating the wet surface mesh of platform. The hydrodynamic coefficients of platform were calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for platform with low forward speed. The equation of platform motions was established and solved in frequency domain, and the responses of wave-induced loads on the platform can be obtained. With the interpolation method being utilized, the pressure loads on shell elements for finite element analysis(FEA) were converted from those on the hydrodynamic computation mesh, which pave the basis for FEA with commercial software. A computer program based on this method has been developed ,and a calculation example of semi-submersible platform was illustrated. Analysis results show that this method is a satisfying approach of wave loads computation for this kind of platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号