首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
船舶在冰区航行时的冰阻力性能一直是国内外关注和研究的重点。冰阻力的研究主要集中在经验方法、数值模拟和实验研究三个方面。同时,由于冰区船舶在航行过程中频繁地与冰层或浮冰产生碰撞,海冰的材料结构和力学性质对冰阻力的研究有重要影响。文章从冰的物理力学特性出发,简要回顾几种重要的冰本构关系模型及其适用性;并从经验方法及试验与数值模拟相结合两个角度,回顾和讨论浮冰区和平整冰区中船舶的冰阻力性能研究进展;最后,基于研究现状提出尚需进一步解决的问题。文章旨在介绍冰区船舶冰阻力性能的研究进展,望能为后续冰阻力研究提供参考。  相似文献   

3.
冰区航行船层冰作用下的结构响应   总被引:1,自引:0,他引:1  
船冰碰撞是一个复杂的动力学过程,如何得到碰撞中的冰载荷一直是船舶碰撞研究领域的热点之一.本文分别建立300000 t冰区航行船和层冰的有限元模型,基于弹塑性理论及非线性有限元理论,利用MSC.Dytran对其碰撞进行数值仿真,模拟了船首及层冰的接触碰撞过程,最终得到船冰碰撞过程中的碰撞力、船首结构响应、船航速变化及能量耗散等参数.分析船冰碰撞过程中的碰撞机理及特性,并对冰区航行船特别是其船壳提出结构加强的建议,为设计冰区航行船提供一定的参考.  相似文献   

4.
王健伟  邹早建 《船舶力学》2016,20(12):1584-1594
应用非线性有限元法进行了破冰船冰区破冰数值模拟。通过比较数值模拟结果和试验结果,对冰体材料模型进行了验证;采用该冰体材料模型,对破冰船以不同航速在不同厚度的层冰中破冰航行时的动态响应进行了数值研究,给出了破冰过程中层冰的变形、冰力的大小以及冰的变形能和动能变化,分析了船速、冰层厚度对破冰阻力的影响。该研究结果对分析破冰船在层冰中破冰时的动态响应特性具有一定的参考价值。  相似文献   

5.
Ice bending is a major failure mechanism of level ice when ships and marine structures interact with level ice. This paper aims to investigate the ice bending and ice load when level ice collides on ships and marine structures using numerical simulation method, and compare the numerical results with field test. The fracture of ice is simulated with extended finite element method (XFEM), and cohesive zone concept is used to describe the crack propagation. In order to consider the characteristics of S2 columnar ice, a transversely isotropic elastic material model is used for the ice bulk elements, and a transversely isotropic Tsai-Wu failure criterion is adopted to predict the initiation of cracks. A well-controlled field test of a landing craft bow colliding with level ice in Baltic Sea is simulated to verify the numerical scheme. The ice plate's continuous deformation, crack initiation and crack propagation at different impact velocities and angles are simulated and the results are discussed. In the simulation, the bending crack emerges at the midline of the top surface of ice plate, then propagates towards free boundary, and finally a circumferential crack forms. It is found that with the impact velocity increases, the bending load increases and the fracture size (perpendicular distance from the crack to the contact edge) decreases. And as the angle between the landing craft bow and vertical direction increases, the bending load and the fracture size decrease. The simulated results corresponds well with the field test. The competition between the circumferential crack and radial crack is also found in the simulation and will be discussed in this paper. The results show that this method well simulates the bending of level ice and predict the ice load, and provides a good approach for investigating the mechanism of different forms of level ice fracture.  相似文献   

6.
With the effects of global warming, the Arctic is presenting a new environment where numerous ice floes are floating on the open sea surface. Whilst this has improved Arctic shipping navigability in an unprecedented way, the interaction of such floes with ships is yet to be understood to aid the designing of ships and route planning for this region. To further explore this topic, the present work develops a procedure to derive an empirical equation that can predict the effects of such floes on ship resistance. Based on a validated computational approach, extensive data are extracted from simulations of three different ships with varying operational and environmental conditions. The ice-floe resistance is shown to strongly correlate with ship beam, ship buttock angle, ship waterline angle, ship speed, ice concentration, ice thickness and floe diameter, and the regression powers of each of the parameters on resistance are ascertained. This leads to a generic empirical equation that can swiftly predict ice-floe resistance for a given ship in a given condition. Subsequently, demonstrations are given on the incorporation of the derived equation into a set of real-time Arctic ship performance model and voyage planning tool, which can predict a ship's fuel consumption in ice-infested seas and dynamically suggest a route with the least safety concern and fuel consumption. Moreover, the equation is validated by providing ice resistance prediction for experimental and full-scale conditions from multiple sources, showing high accuracy. In conclusion, the empirical equation is shown to give valid and rapid estimates for ice-floe resistance, providing valuable insights into ship designs for the region, as well as facilitating practical applications for polar navigation.  相似文献   

7.
This study investigates the repeatability of ice-tank tests with broken ice. Ice-tank test campaigns normally do not perform multiple repetitions of tests with the same initial conditions. Therefore, the repeatability of ice-tank tests with broken ice is not well understood. Data from two test campaigns are analysed. The first test campaign studied the interaction between a 4-legged structure with a vertical waterline and several broken and intact level ice conditions. In the second test campaign, a ship hull geometry was tested. We analyse selected test cases from each test campaign. The ice-tank tests are reproduced using a 3-D discrete element method (DEM) model. Each analysed test case is simulated 20 times. The only difference between each simulation is the initial position of the ice floes. The numerical simulation results show that changes in the initial floe positions can cause large changes in the statistical properties of the ice load. Often, a single random interaction event can be identified that is responsible for the change in the results. Such interaction events can cause additional floe accumulation ahead of the structure, thereby influencing the load statistics for a large portion of the interaction length. The observed events occur both in the numerical simulations and in the physical ice-tank tests. This result indicates that ice-tank tests with broken ice have a poor repeatability; a change in an uncontrolled condition, such as the exact initial floe positions, can lead to a large variation in the experimental results.  相似文献   

8.
A ship–ice–water interaction model is established using smoothed-particle hydrodynamics (SPH) to predict the ice breaking resistance of the icebreaker in the Ye...  相似文献   

9.
根据海冰的力学性质,采用光滑粒子流体动力学(SPH)方法建立海冰本构模型,模拟冰锥实验并与实验结果对比,对冰材料模型准确性进行验证.利用显式动力分析软件LS-DYNA模拟破冰船连续式破冰,得到了海冰的损伤变形和破冰阻力,同时研究了船舶航速和海冰厚度等参数对冰载荷的影响.分析研究表明:应用SPH方法建立的海冰模型能够真实的反映海冰的力学性能,对连续式破冰过程实现较为准确的模拟,为船冰碰撞的数值模拟提供了新思路.  相似文献   

10.
基于我国第七次北极科学考察获得的夏季北极海冰空间分布情况,模拟真实碎冰分布,采用LS-DYNA软件中的流固耦合方法,研究在船舶航速、碎冰尺度、碎冰厚度及碎冰密集度等因素影响下船舶-碎冰碰撞的船体结构响应。结合试验数据得到船体结构的应力、吸能和碰撞力。结果表明:船舶-碎冰的主要碰撞区域为艏部及舷侧的水线附近;在船舶航行于碎冰域时,船体结构的应力、吸能和碰撞力的峰值随碎冰域的船舶航速、碎冰尺度、碎冰厚度及碎冰密集度的增加而增加,但分布情况不同。研究结果为船舶在极地冰区航行提供一定的安全性参考。  相似文献   

11.
Numerical study of ice-induced loads on ship hulls   总被引:1,自引:0,他引:1  
A numerical model is introduced in this paper to investigate both global and local ice loads on ship hulls. This model is partly based on empirical data, by which the observed phenomena of continuous icebreaking can be well reproduced. In the simulation of a full-scale icebreaking trial, the interdependence between the ice load and the ship’s motion is considered, and the three degree-of-freedom rigid body equations of surge, sway and yaw are solved by numerical integration. The variations in the level ice thickness and in the strength properties of ice can also be taken into account. The simulated ice loads on ship hulls are discussed through two case studies, in which the ship’s performance, the statistics of ice-induced frame loads, and the spatial distribution of ice loads around the hull are analyzed and compared with field measurements. As far as we know the present paper is the first to integrate all the features above. It is hoped that further studies on this numerical model can supplement the field and laboratory measurements in establishing a design basis for the ice-going ships especially for ships navigating in the first-year ice.  相似文献   

12.
提出一种适用于船冰碰撞的海冰材料模型。基于该材料模型,通过非线性有限元模拟冰台撞击刚性墙,验证该模型的正确性,并成功将其运用于某PC3冰级破冰船冲撞式破冰过程数值模拟中。研究破冰船冲撞不同厚度层冰的动响应结果,总结船冰相互作用过程中碰撞力和能量的变化、船体结构损伤特性和破冰能力,研究成果可为破冰船结构设计提供参考。  相似文献   

13.
宋明  周利 《船舶力学》2021,25(10):1302-1310
本文针对中国新型极地考察船所受冰载荷进行了研究,其中包含了平整冰阻力和浮冰碰撞力.对于船舶设计者和建造者来说,船舶冰载荷的预估非常重要.本文采用经验公式方法计算了该船在平整冰中航行的冰阻力,并且与模型试验结果进行了对比.结果显示,计算和试验结果中的冰阻力都随船舶航行速度的增大而增大,经验公式方法可以预测出合理的平整冰阻力.通过计算得到了该船的性能曲线,即该船在不同厚度平整冰中航行所能达到的速度.此外,本文还考虑了该船与圆形浮冰之间的三维斜向碰撞问题,采用解析方法评估了浮冰对船舶的撞击力,研究了撞击位置、法向框架角度以及浮冰尺寸对碰撞力的影响.基于计算结果,本文就冰载荷的预测进行了讨论并提出了一些建议.  相似文献   

14.
辽东湾北部浅水区海冰对航行的影响及对策   总被引:1,自引:0,他引:1  
张波 《世界海运》2006,29(6):4-5
辽东湾北部浅水区有许多石油开发区块,由于水浅有冰等因素,使在现有的破冰船和冰区航行技术条件下的航行十分困难。分沿岸冻结区、滩涂堆积区和流冰区等不同区带讨论辽东湾北部海冰存在特征以及海冰对航行的影响,并根据海冰存在特点和海域工程的具体特性提出相应的对策。  相似文献   

15.
In this paper, a numerical model based on the non-smooth discrete element method is presented to investigate the effect of ice floe shape on ship resistance under low-concentration broken ice condition where ice fields consist of relatively small and unbreakable floes. The accuracy of the numerical model is validated by the comparison with a series of experiments conducted by the authors with artificial ice floes made from polypropylene (PP) material. The mean ice resistance estimated by the numerical model is in fairly good agreement with both the experimental results and those from the existing semi-empirical formulas. Additionally, the floe shape effect captured in the experiment, i.e. “rectangle-like” floes results in higher resistance than “elliptic-like” floes, is also predicted by the numerical model. Then, the validated numerical model is used to further investigate the effect of floe shape on ship resistance. It has been found that the rectangle floe results in higher ice resistance than other studied floe shapes. The ratio between the maximum and minimum caliper diameters of floe shows little influence on the ice resistance of ship. Finally, the effect of ice thickness on the ice resistance is also discussed.  相似文献   

16.
在冰区油气开发中,锥体结构可以有效降低冰力,避免强烈的冰激振动,是目前渤海油气平台的主要结构形式。为研究海冰与锥体结构的相互作用过程,文章建立了适用于模拟海冰破碎特性的离散单元模型。该模型将海冰离散为若干个具有粘接-破碎功能的颗粒单元,并通过海冰弯曲试验确定了单元间的粘接强度;然后对海冰与锥体结构的作用过程进行了数值计算,获得了相应的动冰荷载及冰振响应;在此基础上讨论了不同锥角影响下冰荷载及结构振动响应的变化规律。结果表明,水平方向冰荷载及结构冰振响应随锥角的增加明显增加,而竖直方向冰荷载则显著降低。该离散单元模型还可进一步应用于不同类型抗冰结构的冰荷载分析,有助于解决冰区结构物的抗冰结构设计和冰致疲劳分析。  相似文献   

17.
冰载荷下的船舶运动建模   总被引:1,自引:0,他引:1  
随着极地航道的开辟以及极地海洋能源开发的需要,海冰与船体的相互作用以及极地船舶航行与作业安全越来越受到关注。本文主要针对破冰过程的几个典型阶段,对冰载荷对船舶的作用力进行了分析与计算,并考察了破冰船在不同的海冰密集度、冰厚以及船舶不同航速情况下的不同影响。  相似文献   

18.
海冰对港口作业的影响及应对措施   总被引:1,自引:0,他引:1  
渤海和北黄海每年冬季都有结冰现象。海冰能够封锁港口、堵塞航道、破坏近海结构物、使航行中的船舶受损,给船舶进出港航行、操纵及靠离码头作业等带来极大困难,对港口运营也有较大的影响,严重情况会导致重大海难事故。从港口建设决策者及运营管理者的角度出发,多方面阐述了海冰对港口作业的影响,并重点论述了港口应对海冰灾害的措施,为冰况区港口能够延长作业天数及安全生产提供参考。  相似文献   

19.
船舶与冰排碰撞结构响应研究   总被引:1,自引:0,他引:1  
张健  陈聪  张淼溶  尹群 《船舶工程》2014,36(6):24-26
冰排的层厚、流速以及特性在很大程度上影响船舶与冰排碰撞的结构响应。本文分别建立船舶和冰排的有限元模型,采用LS-DYNA进行碰撞接触计算,模拟船艏与冰排发生碰撞。主要考虑相同条件下分别改变冰排厚度、运动状态以及物理性质等单个碰撞参数,对比研究不同碰撞工况下船舶的损伤变形、碰撞力等结构响应差异。得出上述因素对船—冰碰撞的影响规律,为提高船舶抗冰载荷设计提供参考。  相似文献   

20.
In this study, we carried out model tests to investigate the ice failure process and the resistance experienced by a transport vessel navigating in the Arctic region in pack ice conditions. We tested different navigation velocities, ice plate sizes, and ice concentrations. During the tests, we closely observed several phenomena, including the modes of interaction of the ice ship and the moving and failure modes of ice. We also measured the vessel resistances under different conditions. The test results indicate that the navigation velocity is a significant determinant of the moving and failure modes of ice. Moreover, vessel resistance is remarkably dependent on the ice concentration and navigation velocity. The variances of the mean and maximum resistance are also compared and discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号