首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
船舶碰撞缓冲型球鼻艏概念探讨--球鼻曲率对碰撞的影响   总被引:1,自引:0,他引:1  
船舶碰撞事故中,被撞油船船侧的破裂会引起严重的海洋污染,故油船双层船壳设计成为防止被撞油船破损的有效措施。但随着海上运输船舶的数目及尺度的日益增大,双层船壳已不能满足防止船侧破损的要求。本文提出了缓冲型球算般的构思。在船舶相撞的过程中,球鼻艏曲率的尖锐程度影响被撞船船侧的损伤程度,故提出并讨论了表征球鼻艏碰撞特性的标志性参数。通过对不同曲率的球鼻艏一系列的碴撞数值仿真计算,详细描述了外形曲率对球鼻艏的变形形态、碰撞力、碰撞力密度及能量吸收的影响,指出船舶采用钝形的球鼻艏能有效减小碰撞时的穿透损伤。  相似文献   

2.
船舶碰撞事故往往会引起被撞船的船体结构严重损坏,并且威胁船上人员的生命安全.在船一船碰撞中被撞船的损伤程度取决于两个方面:一是舷侧结构的碰撞性能;二是撞击船艏结构的相对刚度.船舶的艏部结构刚度一般远远高于舷侧结构的刚度,在船舶碰撞研究时,通常将撞头理想化为刚体,不考虑其损伤变形和能量吸收,这样做实际上过于保守.本文针对舰船,主要研究舰艏结构的碰撞损伤特性,将撞击舰艏作为可变形结构进行数值仿真研究,得到了一些艏部变形的规律.  相似文献   

3.
高强度钢缓冲型船艏研究   总被引:1,自引:0,他引:1  
在船舶碰撞事故中,一般船侧的破损程度比船艏大,从环境保护的全局意识及降低整体经济损失的角度出发,应该在保证船艏结构在能够承受常规载荷的前提下适当地减小其纵向刚度,使其在撞击船侧时导致船侧破损的可能性降低。笔者从损伤形态,碰撞力,碰撞力密度和能量吸收等方面对采用高强度钢的缓冲船艏进行研究,发现船艏结构采用高强度钢在等强度的条件下,可减少结构的板厚和船艏结构的临界压溃载荷,从而降低对被撞船舶侧结构的破坏。  相似文献   

4.
During ship collisions part of the kinetic energy of the involved vessels immediately prior to contact is absorbed as energy dissipated by crushing of the hull structures, by friction and by elastic energy. The purpose of this report is to present an estimate of the elastic energy that can be stored in elastic hull vibrations during a ship collision.When a ship side is strengthened in order to improve the crashworthiness it has been argued in the scientific literature that a non-trivial part of the energy released for structural deformation during the collision can be absorbed as elastic energy in global ship hull vibrations, such that with strong ship sides less energy has to be spent in crushing of the striking ship bow and/or the struck ship side.In normal ship–ship collision analyses both the striking and struck ship are usually considered as rigid bodies where structural crushing is confined to the impact location and where local and global bending vibration modes are neglected. That is, the structural deformation problem is considered quasi-static. In this paper a simple uniform free–free beam model is presented for estimating the energy transported into the global bending vibrations of the struck ship hull during ship–ship collisions. The striking ship is still considered as a rigid body. The local interaction between the two ships is modeled by a linear load–deflection relation.The analysis results for a simplified model of a struck coaster and of a large tanker show that the elastic energy absorbed by the struck ship normally is small and varies from 1 to 6% of the energy released for crushing. The energy stored as elastic global hull girder vibrations depends on the ship mass, the local stiffness of the side structure, and of the position of contact. The results also show that in case of highly strengthened ship sides the maximum global bending strains during collisions can lead to hull failure.  相似文献   

5.
文章提出一种近似的解析方法评估单壳船侧结构的耐撞性。首先研究了单轴对称工字梁在横向载荷作用下结构从形成塑性铰到弦响应的力学过程,导出能量和变形的近似解析关系,然后考虑球鼻首和船侧结构的碰撞性将主要受撞区域舷侧板梁组合结构离散成为多个单轴对称工字梁,得到单壳舷侧结构碰撞过程能量吸收的近似公式,同时研究了球鼻形状以及不同碰撞位置对结构变形与能量吸收的影响。对散货船单壳舷侧结构的耐撞性用本文近似理论公式  相似文献   

6.
SEA-Arrow (sharp entrance angle bow like an arrow) has no protrusion of the bulbous bow to reduce bow waves and has a transverse stiffening system in the narrow bow space to apply the buffer bow concept. This system has lower longitudinal stiffness than a conventional longitudinal stiffening system and therefore has buffer characteristic in ship-to-ship collision. A comparative collision study of SEA-Arrow and the conventional bulbous bow was conducted using elasto-plastic finite element analysis. A collision scenario where the striking ship hits the side shell of tanker midship perpendicularly was selected. The results showed that the buffer bow characteristic of SEA-Arrow is superior to that of the conventional bulbous bow, since much more energy is dissipated by the plastic deformation of striking and struck ships until the inner shell of struck ship ruptures.  相似文献   

7.
As an increasing number of ships continue to sail in heavy traffic lanes, the possibility of collision between ships has become progressively higher. Therefore, it is of great importance to rapidly and accurately analyse the response and consequences of a ship's side structure subjected to large impact loads, such as collisions from supply vessels or merchant vessels. As the raked bow is a common design that has a high possibility of impacting a ship side structure, this study proposes an analytical method based on plastic mechanism equations for the rapid prediction of the response of a ship's side structure subjected to raked bow collisions. The new method includes deformation mechanisms of the side shell plating and the stiffeners attached. The deformation mechanisms of deck plating, longitudinal girders and transverse frames are also analysed. The resistance and energy dissipation of the side structure are obtained from individual components and then integrated to assess the complete crashworthiness of the side structure of the struck ship. The analytical prediction method is verified by numerical simulation. Three typical collision scenarios are defined in the numerical simulation using the code LS_DYNA, and the results obtained by the proposed analytical method and those of the numerical simulation are compared. The results correspond well, suggesting that the proposed analytical method can improve ship crashworthiness during the design phase.  相似文献   

8.
The primary aim of the present study is to investigate the collision resistance and residual strength of single side skin (SSS) and double side skin (DSS) bulk carriers subject to collision damage. The impact dynamics analyses were conducted using ANSYS LS-DYNA for the evaluation resistance forces, energy absorption and penetration depth for various collision scenarios. The struck vessels of Capsize SSS and DSS designs were assumed to be entirely standstill and the striking vessels of an Aframax-type oil tanker with different bulbous bow shapes were modeled as rigid bodies. The findings were compared, where possible, with existing analytical tools. Residual strength calculations on SSS and DSS vessels were computed corresponding to all considered collision damage scenarios. Traditional Smith's method was applied with the average stress — average strain relationships of elements based on derived semi - analytically. The effect of corrosion was also evaluated by Joint Bulker Project (JBP) Rules on the influence of plate and stiffener thickness. The safety of the vessels was determined as a ratio of the ultimate hull girder strength to bending moment in damaged condition. Finally, results and insights derived from the present work are summarized.  相似文献   

9.
李宝忠 《船舶工程》2015,37(S1):17-21
为研究船舶舷侧结构的碰撞损伤过程,采用非线性动态响应分析方法,使用ANASYS/LS-DYNA显式动力分析软件,对船艏和船舷垂直碰撞过程进行数值仿真,获得了碰撞力、能量吸收和结构损伤变形的时序结果。为了分析船舶舷侧结构耐撞性能,本文对比了常见油船、新型Y型和X型舷侧结构的仿真过程,结果表明新型舷侧结构在整体的耐撞性能上优于传统的舷侧结构,承载构件的不同也会对结构的耐撞性产生很大的差异。  相似文献   

10.
船舶碰撞过程中,被撞船的刚体运动较之碰撞区的局部损伤变形而言,存在一定程度的滞后效应。本文从理论分析和数值仿真两个方面对该滞后现象进行了研究。研究结果表明:被撞船的运动滞后与撞击速度有重要关系;在高速撞击时,船舶碰撞的内、外部机理计算可相对独立地进行,而不会引起明显的分析误差。  相似文献   

11.
双层舷侧结构碰撞损伤过程研究   总被引:10,自引:3,他引:7  
采用非线性动态响应分析方法,对船舶双层舷侧结构的碰撞损客 研究。研究中,结构材料采用线性强化弹性模型并计入了应变速率引起的材料强化,考虑了碰撞面的接触 与摩擦。  相似文献   

12.
在撞击过程中船艏结构的典型损伤是外壳板和内加筋的褶皱,撕裂和弯曲。在以前的船舶结构的碰撞分析的简化方法或数值模拟中往往略去横向肋骨框架对船艏碰撞性能的影响。本文利用有限元数值仿真方法研究了横向肋骨框架在碰撞损坏过程中的作用,发现其对船艏结构的损伤形态、碰撞力及能量耗散有重要影响。因而是碰撞计算中不可忽略的因素。  相似文献   

13.
The paper presents finite element simulations of a small-scale stiffened plate specimen quasi-statically punched at the mid-span by a rigid indenter, in order to examine its energy absorbing mechanisms and fracture. The specimen, scaled from a tanker side panel, is limited by one span between the web frames and the stringers. The paper provides practical information to estimate the extent of structural damage within ship side panels during collision accidents. Moreover, the results of this investigation should have relevance to evaluate grounding scenarios in which the bottom sustains local penetration. This is possible since the structural arrangement of the double hull and the double bottom of tanker vessels is very similar. The experimentally obtained force–displacement response and shape of the deformation show good agreement with the simulations performed by the explicit LS-DYNA finite element solver. The numerical analysis includes aspects of particular relevance to the behaviour of ship structures subjected to accidental loads which could give rise to difficulties in interpreting finite element calculations. In particular, the paper comments on the material nonlinearities, the importance of specifying the precise boundary conditions and the joining details of the structure. The considerable practical importance of these aspects has been the focus of attention in previous publications of the authors which evaluate the experimental-numerical impact response of simple ship structural components, such as beams and plates. Therefore, this paper uses the definitions proposed in those references to evaluate its applicability in the scaled tanker side panel, as an example of a more complex ship structure.  相似文献   

14.
《Marine Structures》2002,15(4-5):365-381
The adoption of double hull system in the side hull of oil tanker has been recognized as an effective countermeasure to prevent a disastrous damage induced by collision accident which might cause cargo oil spill from a struck oil tanker. However, when considering that ocean-going vessels are increasing not only in size but also in speed, a threat of disastrous collision accident should be further mitigated even on the responsibility of striking ships.A series of crush tests using scale models of the buffer bow has been carried out. The test results were compared with those obtained by FEA simulation and a simple analysis. The performance of the buffer bow is discussed focusing on the collapse mechanism and the Pδ characteristics. Then the guidelines for the practical design of buffer bow structure are presented.  相似文献   

15.
单壳船舷侧结构的碰撞分析   总被引:1,自引:1,他引:0  
给出一种计算船体结构基本构件——梁、板耐撞性的简化分析方法,并将该方法应用于单壳船舷侧结构的碰撞分析。讨论了球鼻首撞击作用下单壳船舷侧结构的总体破坏模式及其渐进破坏过程,提出了计及渐进破坏过程的碰撞损伤简化计算方法。实例计算结果表明:该简化分析方法能对单壳船舷侧结构的耐撞性作出合理的预报,可应用于船舶设计阶段船体结构耐撞性能的评估。  相似文献   

16.
柔性、刚性球艏对双壳舷侧结构耐撞性能影响的研究   总被引:1,自引:0,他引:1  
采用非线性显示动力有限元软件LS_DYNA,对舷侧双壳结构在柔性和刚性球艏撞击下的动力响应进行仿真研究.采用全船有限元模型,考虑船体周围附连水质量对结构动力响应的影响.给出了碰撞力-撞深、能量-撞深曲线以及各构件吸收的能量.仿真结果表明:不同球艏撞击下舷侧内外壳板的破裂时刻、撞深和舷侧结构变形性能都有所不同.  相似文献   

17.
被撞船刚体运动响应的滞后特性   总被引:5,自引:1,他引:4  
船舶碰撞过程中,被撞船的刚体运动较之碰撞区的局部损伤变形存在一定程度的滞后。本文以理论分析和数值仿真两种方法对该滞后现象进行了研究。提出了运动滞后分析的基本假定和计算公式。研究结果表明,被撞船的运动滞后与撞击速度有重要关系,在高速撞击时,船舶碰撞的内、外部机理计算可相对独立地进行而不会引起明显的分析误差。  相似文献   

18.
《Marine Structures》2002,15(2):101-117
A theoretical method for plate tearing by a rigid wedge is developed in this paper. The studied model is an idealization of ship-grounding and collision damage. The analysis model postulates that the plate curls up into two curved surfaces behind the wedge tip and that the plate material ahead of the wedge is tensioned and ruptured due to the direct pushing. Based on a parametric study, a semi-empirical formula is proposed for determining grounding force in the event of a ship running onto rocks in a high-energy grounding. The bottom strengths of single hull structures and double hull structures in ship-grounding incidents are compared. Finally, simple formulae for determining damage resistance and the extent of damage in ship grounding, expressed in terms of the ship principal particulars, are developed.  相似文献   

19.
船舶搁浅事故会引起船体破损、环境污染和人员伤亡等严重后果.研究船舶搁浅,不仅有利于海上生命安全、防止海洋污染,还可为船体结构的抗冲击设计及规范航运繁忙区域中船舶的航速、操作规程提供一定的依据.本文用数值仿真法研究了船舶高能搁浅中的内部力学问题,分析了典型双层底结构的损伤变形、受力和能量耗散等结果,提出了一种新式的抗搁浅YF双层底结构,并与原结构进行了比较.研究表明,损伤变形集中于结构与礁石相接触的区域,高能搁浅内部力学问题的研究可以主要考虑局部的船体结构;肋板的存在显著增加了船底结构的抗搁浅能力;高能搁浅过程中,由于垂直方向的接触力,礁石对双层底的垂向贯入量会略有减小;当纵桁远离搁浅区域时,它的吸能能力无法发挥,抗搁浅作用很弱;YF双层底结构比原结构具有更大的吸能能力和抗搁浅力.  相似文献   

20.
《Marine Structures》2000,13(3):147-187
A series of nine tests was conducted to investigate the behavior of a double hull in a variety of stranding or collision scenarios. Cones of five different nose radii were made to model accident scenarios ranging from grounding on a sharp rock to stranding on a relatively flat seabed or shoal, and collision with a sharp bulbous bow of a fast ship to collision with a large bow of a VLCC. Three sub-series were designed in which the cones pressed shell plating, main supporting members and intersections of main supporting members. The test results reveal that the nose radius and the location of penetration have a very strong influence on the behavior of a double hull. Therefore, careful definition of accident scenarios is of crucial importance to assess the strength of ship hulls in accidents, and it is necessary to base the assessment on probability of accidents. Characteristics of the response of structural members were identified and idealized as simple theoretical models. Analytical formulae were derived and discussed. Primary damage mechanisms include membrane stretching of shell panel, onset of rupture, crack propagation, folding of main supporting members, and crushing of intersections of main supporting members. The new plate punching model captures the phenomenon that the load-carrying capacity of a plate depends on the size of the striking object. The plate perforating model predicts the reduced strength of plates with cracks. It reflects the observed test phenomenon that loads do not drop to zero even after rupture occurs in shell plating. A simple analytical method was developed to calculate the global strength of a double hull. The method takes geometrical parameters of seabed rocks or bulbous bows into account, and can be used for a wide range of different accident scenarios. Calculations using this method compared satisfactorily with the test results. This method can be easily incorporated into a probability-based framework to properly assess structural performance for a variety of damage scenarios. Similar to the Wang et al. (J Ship Res 41 (1997) 241) paper on raking damage, which uses only four analytical models, this method also requires only a common calculator to carry out the calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号