首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The practical use of fracture mechanics has been established for use on large turbine and electric generator rotor components used in the atomic power generation and the aircraft industry. Application areas in the offshore industry have also been identified. Fracture mechanics is currently used at the design stage of offshore facilities. It provides the basis for fatigue life prediction, steel selection and tolerance setting on allowable weld imperfections. Fracture mechanics is also used during the operational stage of a structure to make important decisions on inspection scheduling and repair strategies and as a tool for establishing limits on operational conditions. Linear elastic fracture mechanics relies on the use of the stress intensity factor concept. The stress intensity factor is a very important fracture mechanics parameter. Therefore, the accuracy of any fracture mechanics model for the prediction of fatigue crack growth in offshore structures for example will depend very much on the accuracy of the stress intensity factor solution used. Several empirical and semi-empirical solutions have been developed over the years with varying degrees of accuracy. This paper presents a review of some of these methods and attempts to assess their accuracy in predicting Y factors for welded tubular joints by comparing predicted results with experimental data obtained from fatigue tests conducted on large scale welded tubular joints. The experimental results were conducted under simulated service conditions, using a jack-up offshore standard load history (JOSH). A comparison between the experimental and predicted results shows that there may be other factors, which influence fatigue crack growth under variable amplitude conditions. Some of these factors have been identified and discussed in this paper.  相似文献   

2.
复杂载荷作用下潜艇结构疲劳裂纹扩展预报方法   总被引:4,自引:0,他引:4  
张鼎  黄小平 《舰船科学技术》2012,34(2):11-16,21
统一疲劳裂纹扩展模型是课题组在McEvily模型基础上提出来的,它将疲劳裂纹扩展的3个扩展区域统一起来,并能解释更多的疲劳试验现象.本文介绍了统一疲劳裂纹扩展模型的基本表达式.将此模型与焊缝焊趾表面裂纹应力强度因子的计算方法结合起来,探讨复杂载荷作用下潜艇结构疲劳裂纹扩展预报方法.将服从Weibull分布的随机载荷系列编排为升序、降序载荷谱及随机载荷谱,预报潜艇锥柱结合壳焊缝焊趾处表面裂纹在3种载荷谱下的疲劳裂纹扩展情况,并分析随机载荷谱下载荷次序效应及初始裂纹尺寸对疲劳裂纹扩展行为的影响.结果表明,载荷次序效应对潜艇结构疲劳寿命的影响很明显,且合理的确定初始裂纹尺寸对潜艇结构的疲劳寿命预报是非常重要的.  相似文献   

3.
具初始裂纹钢桥梁焊接构件疲劳裂纹扩展和疲劳寿命计算   总被引:1,自引:1,他引:0  
钢桥梁构件因焊接缺陷或者在疲劳应力交互作用下萌生裂纹,钢桥梁构件因存在初始裂纹大大地降低焊接构件的疲劳性能.文中考虑到焊接构件往往会存在初始缺陷,研究了含初始缺陷的桥梁焊接构件的疲劳分析方法.在已有的大量含裂纹构件的疲劳实验工作基础上,结合课题组所做的焊接构件疲劳实验资料,假设初始裂纹焊接构件在疲劳裂纹扩展过程中裂纹形状保持为半椭圆形状;针对桥梁构件实际受力特征,由钢桥梁构件的高周疲劳损伤演化方程入手,考虑初始裂纹条件下裂纹前缘的损伤区的存在及其对裂纹扩展的影响,采用虚拟裂纹扩张方法推导了适用于钢桥梁构件的疲劳裂纹扩展分析的疲劳裂纹扩展率公式,建议了裂纹扩展和疲劳寿命数值计算方法.采用文中的计算方法,研究了已有的钢桥梁结构焊接构件疲劳实验的裂纹扩展过程和疲劳寿命的计算.计算结果表明:裂纹的扩展过程中裂纹的深度和表面半长度之比a/c是一个变化的数值,且在一定的a0/t0条件下,随着a0/c0的增加,循环次数逐渐增大.  相似文献   

4.
为研究厚板的原始焊接板厚及取样位置对疲劳裂纹扩展速率的影响规律,完成了14MnNbq钢5种原始焊接板厚(40 mm、50 mm、60 mm、80 mm和100 mm),共计30个疲劳试件的裂纹扩展试验。运用数理统计方法回归处理试验数据,得到了在给定置信水平下的5组da/dN-ΔK曲线以及Paris公式的拟合值参量,同时还得到了100 mm厚板不同取样部位的da/dN-ΔK曲线。结果表明:随着原始焊接板厚的增加,疲劳裂纹扩展速率也在加大;受取样位置的影响,表面试件比中部试件的疲劳裂纹扩展速率快。  相似文献   

5.
We investigated the difference in fatigue behaviour between the aluminium alloys A5083-O and A5083-H321, which are used as structural components in ships and high speed craft. We obtained S–N curves for the base materials and the welded joints made of A5083-O. The relationships between the fatigue crack propagation rates and the stress intensity factor ranges ΔK, ΔK eff and ΔK RPG (Toyosada et al. in Int J Fatigue 26(9):983–992, 2004) were determined. Additionally, the evolution of fatigue crack growth for the base materials and the welded joints made of A5083-O was measured. We also carried out numerical simulations of fatigue crack growth for both base metals and their welded joints made of A5083-O. The difference in fatigue crack growth behaviour for each alloy and the validity of the numerical simulations of fatigue crack growth based on the RPG stress criterion (Toyosada et al. 2004) in the base materials and their welded joints was investigated.  相似文献   

6.
改进的疲劳裂纹扩展率模型及其参数估算方法   总被引:1,自引:0,他引:1  
王芳  陈峰落  崔维成 《船舶力学》2010,14(3):252-262
疲劳裂纹扩展率曲线是任何基于裂纹扩展理论的疲劳寿命预报方法的基本疲劳特性。论文作者们提出了一种改进的疲劳裂纹扩展率模型,它可以解释金属疲劳试验中观察到的各种现象。为了便于工程应用,文中也给出了如何利用除裂纹扩展试验以外的其它试验结果来估算该模型参数的方法。文中还对恒幅载荷下该模型及其参数估算方法对HTS-A钢的适用性进行了分析,分析结果将为利用该模型预报由HTS-A型钢制成的海洋结构物的疲劳寿命提供基础。  相似文献   

7.
Ship structures are submitted to variable cyclic loading during navigation. The cyclic motion of waves induces variable and complex loadings in the structure, which could generate fatigue damage. Moreover, most of these metallic structures are welded assemblies. This technique generates local stress concentrations at the weld toe, which becomes a critical area regarding fatigue. In previous works, a methodology to predict fatigue life was developed and tested on butt-welded and cruciform joints. The present work focuses on other welded assemblies in order to extend fatigue crack initiation life evaluation to a wider range of ship details. The strategy could be split into two steps. First, a finite element calculation is performed under constant or variable amplitude loadings, in order to analyze the elastic shakedown of the structure. To characterize the material heterogeneity of the welded joint, experimental tests together with micro-hardness measurements, are performed on a simulated heat-affected zone. If there is a shakedown in the structure, a post-treatment is applied to predict the fatigue crack initiation. It is based on a two-scale damage model, initially developed by Lemaitre et al. and again includes the heterogeneity of fatigue properties. To validate this methodology, some experimental tests have been performed on welded assemblies which are typical of shipbuilding applications, using a fatigue machine. These comparisons between experimental and numerical fatigue lives are encouraging.  相似文献   

8.
为研究试样厚度对船用钢疲劳裂纹扩展速率的影响,设计并实施两组不同厚度的紧凑拉伸试样进行疲劳裂纹扩展速率试验,同时建立了三维疲劳裂纹扩展有限元模型,分别基于线弹性理论和弹塑性理论对应力强度因子进行了计算,并分析了试样厚度对裂纹扩展速率的影响。试验与计算结果的综合分析表明:相同应力水平下,薄试样裂纹尖端的塑性区明显大于厚试样,且裂纹尖端应力强度因子值大于理论经验计算结果可达23.25%,因此,在材料裂纹扩展速率试验前,特别是试样厚度尺寸较小时,应充分考虑试样的厚度效应,参考基于弹塑性理论计算得到的应力强度因子结果,同时有必要针对当前试样及材料进行专门的裂纹扩展速率试验,以得到准确裂纹扩展参数结果。  相似文献   

9.
Many accidents are caused by fatigue in welded built-up steel structures, and so it is important to estimate the fatigue lives of such structures quantitatively for safety reasons. By assuming that fatigue cracks cannot grow without an accumulation of alternating tensile/compressional plastic strain, one of the authors identified an improved effective stress intensity factor range ΔK RPG based on the re-tensile plastic zone generating (RPG) load, which represents the driving force for fatigue cracks, and suggested that ΔK RPG should be used as the parameter to describe fatigue crack growth behavior. The “FLARP” numerical simulation code in which ΔK RPG is implemented as the fatigue crack growth parameter, was developed in order to predict fatigue crack initiation and propagation behavior. In this paper, it is demonstrated that FLARP gives accurate estimates for fatigue life by comparing the estimated fatigue crack growth curves and SN curves with the experimental results for in-plane gusset welded joints, which are used in many welded steel structures. Moreover, the effect of induced bending moment due to the linear misalignment in the out of plane direction on the fatigue strength of in-plane gusset welded joints is investigated through numerical simulations.  相似文献   

10.
《Marine Structures》2005,18(1):25-42
Full-scale fatigue testing of five test specimens of side longitudinals of a ship/FPSO was carried out at the structural laboratories of DNV in Oslo. The main results from these tests are presented in this paper. The specimens have also been modelled by finite elements and some of the results from the most complex connections have been compared with measured data. The fatigue test results are compared with a hot spot S–N curve that is recommended for design of plated structures that are subjected to dynamic loading.  相似文献   

11.
采用预制缺口的舰体结构试样,对舰用907A钢在拉伸疲劳载荷作用下的裂纹扩展规律进行了高频疲劳试验研究,得出在拉伸疲劳载荷作用下舰体结构的裂纹扩展规律,模拟了舰船在航行时波浪交变载荷对舰船结构的破坏作用,试验结果对预报破损舰船在波浪中航行时的裂纹扩展情况具有参考作用。  相似文献   

12.
The present work is motivated by the increasing need for cost-efficient solutions in offshore structural systems for wind energy production and for improvement of their structural performance. The structural behavior and design of high-strength steel welded tubular connections (yield strength higher than 700 MPa) subjected to monotonic and strong cyclic loading is investigated. In the first part of the paper, an experimental investigation is presented on high-strength steel tubular X-joints subjected to monotonic and cyclic loading far beyond the elastic limit of the material, leading to weld fracture. Two grades of weld metal material are employed in the welding process of the specimens. The experimental results indicate that the weld material grade has a significant influence on the deformation capacity of the welded connection under monotonic loading conditions, and its low-cycle fatigue life. The experimental procedure is simulated using advanced finite element models, elucidating several features of joint behavior and complementing the experimental results. Overall, a good agreement is found between numerical simulations and experimental results, in terms of both global response and local strains at the vicinity of the welds. Furthermore, the structural performance of the welded tubular joints under consideration is assessed using available design methodologies in terms of both ultimate strength and low-cycle fatigue resistance, in an attempt to validate an efficient design methodology for low-cycle fatigue. The results from this research effort are aimed at developing the necessary background for the possible use of high-strength steel in tubular steel lattice structures, particularly in offshore platforms for renewable energy production. They can also be used as a basis for the possible amendment of relevant design specifications and recommendations for including special provisions for high-strength steel structural systems.  相似文献   

13.
High-cycle fatigue experiments are performed on welded tubular steel X-joints, with braces and chord of equal diameter. They are scaled-down joints, used extensively in offshore wind platforms. Three different welding procedures are considered in specimen fabrication: manual, fully-automatic and manual with HFMI post-weld treatment. Τwo possible locations for crack initiation were identified: chord “crown” and “in-between location”, also verified by numerical calculations and fractography of failed specimens. Monotonic loading tests on fatigue-cracked specimens showed good performance in terms of ultimate strength and deformation capacity, despite the presence of through-thickness cracks. The results are compared with predictions from relevant design standards.  相似文献   

14.
船舶等许多工程结构在服役过程中的受载荷历程是一个随机过程.而变幅载荷下的载荷相互作用对疲劳裂纹扩展寿命将产生显著的影响.因此研究随机载荷作用下的裂纹扩展及定量计算对船舶结构的疲劳寿命预测的可靠性是十分重要的.该文提出了一个基于有效应力强度因子,以应力比和裂纹尖端塑性区尺寸为主要参数的随机载荷作用下疲劳寿命预测模型.该模型用于预测几种载荷谱作用下的裂纹扩展试验,结果表明预测结构和实验结果符合得很好.  相似文献   

15.
Fatigue crack propagation in marine structures is obviously governed by mechanics of the considerably different four levels of multi-scale problems. Problems of structural response to environmental loads have length scale of several hundred meters, whereas possible detectable size of cracks from initial defects in a weld is of the order of millimeters. Once a fatigue crack initiates, crack tip plasticity is of the order of several grain sizes, while the resulting fatigue crack growth in each load cycle is of the order of nanometers. In our previous work, the first author and their associates have developed the so-called CP-System, which can treat the first two multi-level problems as an integrated system. Furthermore, we have incorporated the third level of mechanics by using the stress intensity range corresponding to the repeated tensile plastic deformation ahead of the crack tip. In the present paper, we shall discuss a more rational integral equation-based formulation in order to integrate the third and fourth levels of micro-mechanics to the first two levels of continuum mechanics.The method is then applied to fatigue crack propagation under the effects of random sequence of clustered loading. As an example of the random sequence of clustered load, we shall use the so-called “storm model”. In the crack propagation simulation, we have to take into account of the plastic wake on the crack surfaces, whose thicknesses are influenced by the material parameters involved in the crack growth model. These parameters are first identified by the fatigue tests under combined constant and random loading using a CT specimen. Then, fatigue crack growth is investigated by numerical simulation and fatigue tests for various random sequences of clustered loading. The experimental and numerical results agree quite well with each other, and fatigue crack propagation is found to be considerably retarded under random sequence loading, so that the conventional equivalent stress approach may provide rather conservative results to the real seaway loading.  相似文献   

16.
设计了一种含局部减薄半椭圆缺口的紧凑拉伸试样(ECT),以模拟压力容器接管区结构,并对16MnR钢的ECT试样进行了不同应力比的恒幅低周疲劳裂纹扩展试验.结果表明:ECT试样具有类似压力容器接管区的高应变分布场;低周疲劳裂纹扩展速率与由线积分定义计算的循环J积分,△J在双对数坐标中呈良好线性相关,且回归的材料参数与相同材质的高周疲劳试验获得的Paris常数基本一致.  相似文献   

17.
It is necessary to manage the fatigue crack growth (FCG) once those cracks are detected during in-service inspections. This is particular critical as high strength steels are being used increasingly in ship and offshore structures. In this paper, a simulation program (FCG-System) is developed utilizing the commercial software ABAQUS with its object-oriented programming interface to simulate the fatigue crack path and to compute the corresponding fatigue life. In order to apply FCG-System in large-scale marine structures, the substructure modeling technique is integrated in the system under the consideration of structural details and load shedding during crack growth. Based on the nodal forces and nodal displacements obtained from finite element analysis, a formula for shell elements to compute stress intensity factors is proposed in the view of virtual crack closure technique. Neither special singular elements nor the collapsed element technique is used at the crack tip. The established FCG-System cannot only treat problems with a single crack, but also handle problems with multiple cracks in case of simultaneous but uneven growth. The accuracy and the robustness of FCG-System are demonstrated by two illustrative examples. No stability and convergence difficulties have been encountered in these cases and meanwhile, insensitivity to the mesh size is confirmed. Therefore, the FCG-System developed by authors could be an efficient tool to perform fatigue crack growth analysis on marine structures.  相似文献   

18.
Ships belong to those welded structures which are prone to fatigue due to high cyclic loads. Different approaches exist for the fatigue strength assessment which are varying between the industrial sectors. Therefore, deeper fatigue strength investigations were performed in Germany within an industry-wide joint research project aiming at the harmonization of the approaches. Regarding ship structures, two types were selected for full-scale tests. The first concerned web frame corners being typical for roll-on/roll-off ships (ro/ro) ships, from which three models were tested under constant amplitude loading. The second type was the intersection between longitudinals and transverse web frames, which recently showed fatigue failures in containerships. Five models were tested, three under constant and two under variable amplitude loading. All tests showed a relatively long crack propagation phase after first cracks had appeared, calling for a reasonable failure criterion. For the numerical analysis, the structural hot-spot stress as well as the effective notch stress approach have been applied. The latter allows the consideration of the weld shape which could partly explain differences in the observed and calculated failure behaviour. Another factor is the distribution of welding-induced residual stresses, which obviously affected the failure behaviour in the web frame corner as well. Insofar the investigations give a good insight into the strength behaviour of complex welded structures and into current problems and opportunities offered by numerical analyses.  相似文献   

19.
风暴模型是Tomita等提出的用来评估船舶结构疲劳强度的一种随机波浪载荷简化模型,它能表达波浪载荷是与时间相关的随机过程。文中介绍了风暴模型及波浪诱导应力短期分布的基本特征。将风暴模型和裂纹扩展率单一曲线模型及焊趾表面裂纹应力强度因子的计算方法结合起来,探讨了复杂载荷作用下船舶结构疲劳裂纹扩展预报方法。并用权函数法计算了给定残余应力分布的表面裂纹应力强度因子。预报了对接焊接接头焊趾处表面裂纹在风暴波浪载荷作用下的疲劳裂纹扩展行为,结果表明风暴的大小、顺序,初始裂纹尺寸及残余应力对裂纹扩展行为影响明显。合理的风暴模型参数及初始裂纹尺寸的确定对船舶结构的疲劳寿命预报是非常重要的。  相似文献   

20.
利用二阶摄动方法研究了疲劳载荷作用下结构线弹性裂纹的弯曲扩展问题并求解了三维动态应力强度因子.利用二阶摄动方法研究了疲劳载荷作用下裂纹路径预测时的应力准则与能量准则之间的关系.就均匀物质而言,在二阶摄动分析理论的框架内,两种准则指明了相同的三维疲劳弯曲裂纹扩展路径.但在具有非均匀断裂韧度的物质中,能量准则优越于应力准则.作为二阶摄动方法的实际运用,研究了焊接结构中疲劳线弹性裂纹的形态特征和弯曲扩展路径问题,综合考虑了诸如远场动态作用应力、焊接残余应力、局部物质衰变以及不同尺寸的缺陷的存在等因素,绘制出疲劳载荷作用下退化区域中裂纹弯曲扩展的临界轨迹曲线.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号