共查询到17条相似文献,搜索用时 46 毫秒
1.
对波浪进行精确的数值模拟一直是人们所关注的,采用在Boussinesq方程的基础上将垂向流速断面进行分层,在每一层中对流速断面进行积分,求得各层平均流速,用此平均流速来代替每一层的流速,并在各层间加上界面边界条件,以求出流速和自由表面位移,这样可以得出精确的波浪数学模型。本文例举了规则波经过淹没潜堤时的传播变形实验,验证了二层Boussinesq模型在实际运用中的精确性。 相似文献
2.
3.
4.
基于改进型Boussinesq方程,在非交错网格下,建立了二维波浪数值模型。模型计算采用了有限差分法,时间格式上采用混合四阶Adams—Bashforth—Mouhon,空间格式上采用了Wei等(1995)给出的格式。数值计算中。采用了内部造渡技术。数值模拟针对3纽经典浅滩地形上波浪传播变形的实验进行,数值计算结果与实验结果吻合较好。验证了数值模型,该模型可期望用于实际港口渡浪预报。 相似文献
5.
6.
为了解不同时间空间差分格式在常用的二阶或四阶Boussinesq模型中的应用,针对4组近似到0(旷)阶完全非线性的二阶或四阶色散性的高阶Boussinesq水波方程,在非交错网格下,利用Crank-Nicolson格式、蛙跳格式、混合四阶Adams-Bashforth-Moulton格式,建立不同的数学模型。利用这些数值模型模拟波浪在潜堤上的传播变形,通过数值结果与试验结果的比较.考察时间格式及空间格式对模型的影响。结果表明:对同一方程,混合四阶Adams-Bashforth-Mouhon格式和Crank-Nicolson格式均能取得较好模拟效果,蛙跳格式的模拟效果最差;二阶Boussinesq模型采用追赶法求解已能满足要求;对四阶Boussineq模型,二阶空间导数色散项亦采用四阶精度,其数值效果会更好。 相似文献
7.
8.
9.
准确模拟波浪在多孔介质中传播变形对于研究抛石防波堤等结构的消能作用是十分必要的。对Laplace方程、自由表面处的运动学方程和动力学方程以及海底运动学方程进行无因次化,且以自由表面处速度势为切点,进行幂级展开,最终给出4个不同的高阶Boussinesq水波方程。在常水深下对这些方程的一维问题进行了理论研究,并将无因次相速度和无因次虚波数与解析解结果进行对比,方程的相速度与解析解吻合程度较好,虚波数与解析解基本吻合,表明高阶Boussinesq方程可用于模拟波浪在多孔介质中的传播变形。 相似文献
10.
在近岸变水深缓坡海域,充分考虑到波浪传播过程中的折射、绕射、反射以及波浪破碎等效应,采用引入破碎项的椭圆型缓坡方程,基于自适应四叉树网格建立了近岸波浪缓坡方程的数值模型,数值模型采用有限体积法求解。该网格可根据计算节点处波长与网格尺寸间的关系自动判定是否进行网格加密划分,使之适应椭圆型缓坡方程每个波长范围内至少布置8个计算节点的特征,提高计算精度的同时又能提高计算效率。采用已有的物理模型试验和实测资料对数值模型进行了验证。结果表明,该模型可以有效地模拟近岸变水深缓坡海域波浪传播。 相似文献
11.
Boussinesq方程波浪数学模型计算马来西亚科美纳河河口单堤整治方案的波浪场,为分析整治建筑物对河口地区水动力条件的影响提供依据。 相似文献
12.
13.
ZHANG Zhao-de CHEN Shuai 《船舶与海洋工程学报》2007,6(3):1-5
Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore structure, changes in the FRF can be measured. In this way, shifts in FRF can be used to detect cracks. An experimental model was constructed to verify the FRF method. The relationship between FRF and cracks was found to be non-linear. The effect of multiple cracks on FRF was analyzed, and the shift due to multiple cracks was found to be much more than the summation of FRF shifts due to each of the cracks. Then the effects of noise and changes in the mass of the jacket on FRF were evaluated. The results show that significant damage to a beam can be detected by dramatic changes in the FRF, even when 10% random noise exists. FRF can also be used to approximately locate the breakage, but it can neither be efficiently used to predict the location of breakage nor the existence of small hairline cracks. The FRF shift caused by a 7% mass change is much less than the FRF shift caused by the breakage of any beam, but is larger than that caused by any early cracks. 相似文献
14.
15.
Masashi Kashiwagi 《Journal of Marine Science and Technology》1998,3(1):37-49
This paper presents an effective scheme for computing the wave-induced hydroelastic response of a very large floating structure, and a validation of its usefulness. The calculation scheme developed is based on the pressure-distribution method of expressing the disturbance caused by a structure, and on the mode-expansion method for hydroelastic deflection with the superposition of orthogonal mode functions. The scheme uses bi-cubic B-spline functions to represent unknown pressures, and the Galerkin method to satisfy the body boundary conditions. Various numerical checks confirm that the computed results are extremely accurate, require relatively little computational time, and contain few unknowns, even in the region of very short wavelengths. Measurements of the vertical deflections in both head and oblique waves of relatively long wavelength are in good agreement with the computed results. Numerical examples using shorter wavelengths reveal that the hydroelastic deflection does not necessarily become negligible as the wavelength of incident waves decreases. The effects of finite water depth and incident wave angle are also discussed. 相似文献
16.
由于水上基坑处于水陆交界处或直接位于水域中,工程面临波浪、潮流等作用,其设计方法与陆上基坑有较大差异。以澳门某工程取水口基坑围护工程为例,通过弹性地基梁计算方法和数值模拟计算方法,分别分析了在无动水条件和水流波浪动水条件下围护结构的变形和受力特性,并分析了围护桩刚度和坑底加固参数的敏感性。结果表明:基坑临水侧采用刚度较大的围护桩以及坑底加固可以显著减少水上基坑变形,保证基坑的稳定性。研究可以为类似水上基坑工程设计提供思路和方法。 相似文献
17.