首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为研究PC连续箱梁桥0号块建模参数对其受力性能的影响程度,以选取合理的建模参数,以某跨度为(55+90+90+55)m的PC连续箱梁桥为工程背景,建立0号块空间有限元模型,分析不同桥墩高度、预应力筋沿程预应力损失、支座约束等参数下0号块受力性能的变化规律,以及最大悬臂施工阶段和成桥阶段0号块的空间应力特点。分析结果表明:0号块箱梁底板与支座相交位置应力受墩高影响明显,建模时应考虑桥墩的影响,墩高可按1倍梁高左右简化处理;沿程预应力损失分布对0号块受力影响明显,计算时应考虑其影响;运营使用阶段如不考虑支座约束,0号块局部应力失真,应力计算时可采用固结约束代替真实支座进行简化处理;0号块在横隔板等截面突变位置主拉应力较大,应优化构造尺寸和配筋,以及加强施工质量控制。  相似文献   

2.
综合运用MIDAS和ANSYS计算软件,对广东省内某大跨径连续刚构桥主桥墩顶块(0号块)在施工阶段和营运阶段的受力情况进行了空间仿真及其抗裂性能分析。研究结果表明,在施工阶段最大悬臂端荷载作用下,横隔板的人洞顶部、横隔板与底板的交界处、横隔板与腹板的连接处等局部区域均产生较大的拉应力。若采用C60混凝土,则不能满足04...  相似文献   

3.
三滩黄河大桥0#块空间应力分析   总被引:5,自引:0,他引:5  
本文对连续刚构桥箱梁在施工阶段各工况下0#决顶板、底板、腹板和横隔板作了空间应力分析,计算中计入了收缩、温度和时间效应的影响,对不同施工方法作了对比分析,从而获得施工过程次应力的准确分布规律,为0# 块优化设计积累了经验。  相似文献   

4.
为研究波形钢腹板PC箱梁桥横隔板式转向块结构参数对其受力的影响,以某波形钢腹板PC箱梁连续刚构桥为工程背景,基于ANSYS有限元软件建立了转向块节段实体有限元模型,研究了转向块在体外预应力作用下的受力行为,分析了波形钢腹板厚度、转向块横隔板厚度、预应力孔道距底板的距离等参数的变化对该类转向块受力的影响。结果表明,横隔板式转向块受力合理,传力明确,传力路径短;转向块的厚度对其受力影响较大;波形钢腹板厚度在大于一定值之后对转向块受力影响很小;转向孔位置对局部应力分布影响较大,建议转向孔距底板间距应大于1倍孔径,转向孔间距应大于3倍孔径。  相似文献   

5.
基于板壳单元的箱梁桥空间应力分析   总被引:2,自引:0,他引:2  
采用8节点40自由度实体退化板壳单元编制有限元软件,对预应力混凝土箱梁桥进行空间应力分析.以某(80+150+80)m预应力混凝土连续刚构桥为例,对采用板壳单元与采用杆系单元计算预应力混凝土箱梁桥空间应力的结果进行对比、分析,板壳单元程序分析结果表明截面最大主拉应力主要出现在箱梁顶、底板与腹板交界处以及底板横向跨中附近;建议活载正应力放大系数一般可以取1.15,部分位置可取1.2~1.6,活载剪应力放大系数一般可取1.5~1.8.  相似文献   

6.
冯玉祥 《公路工程》2016,(4):140-144,206
针对大吨位群锚体系锚下局部应力分布复杂的问题,以通河松花江大桥连续箱梁预应力施工工程为背景,利用大型有限元分析软件建立边梁预应力锚下局部分析有限元模型。考虑预应力孔道挖空及OVM锚具的影响,对预应力张拉完成后、管道压浆前的最不利受力阶段进行数值模拟,揭示锚下应力分布规律。并据此对箱梁预应力体系进行优化,提出优化方案。结果表明:设计优化后箱梁顶、底板,腹板及端横隔板最大拉应力值降为2~4 MPa,对改善局部不利应力条件有较好效果。  相似文献   

7.
预应力混凝土连续刚构桥的0号块箱梁段由于其构造及受力及其复杂,因此保证其安全十分重要。结合某连续刚构桥,使用MIDAS/FEA软件建立0号块局部有限元模型,从整体模型中提取结构内力作为局部模型的边界条件,对其在施工、成桥及运营阶段等荷载工况下进行了应力分析,分析结果表明,该桥墩0号块受力均满足规范要求,计算结果已为该桥设计提供依据。  相似文献   

8.
目前关于横隔梁对波形钢腹板PC连续梁桥纵向正应力的影响,都是基于小梁试验或理论分析的基础,与实际有差别。鉴于此,依托一在建单箱九室波形钢腹板PC组合连续箱梁桥,建立该桥有限元模型,分析3车道偏载作用下有无横隔梁2个工况下箱梁顶、底板的纵向正应力分布规律和剪力滞效应。结果表明:未设横隔梁的桥梁纵向正应力分布变化剧烈,距墩顶越近,顶、底板正应力横向分布变化越大;设置横隔梁后桥梁纵向正应力分布较为均匀,顶、底板正应力横向分布在跨中截面附近变化较大;未设横隔梁与设置横隔梁时顶、底板正应力最大比值分别为1.47、1.32;设置横隔梁的桥梁在汽车荷载下剪力滞效应最大,3车道偏载与6车道对称荷载作用下箱梁顶板剪力滞系数比值为1.04,底板剪力滞系数比值为1.06;横隔梁对改善箱梁正应力分布、降低剪力滞程度具有显著影响。  相似文献   

9.
文中以大跨度混合梁连续刚构桥0号块为研究对象,建立有限元模型进行分析,对分层浇筑方式进行合理优化;最大负弯矩及最大剪力工况计算表明,顶底板正截面抗裂与法向应力验算均能满足要求.最大悬臂状态下,顶底板实桥布置应力测点均为受压状态,实测值与理论值吻合度较高,验证了有限元模型的正确性.0号块剪力滞分布较为复杂,顶底板刚度在整...  相似文献   

10.
为了研究横隔板变形对曲线钢箱梁桥焊缝细节疲劳应力的影响,以某三跨连续钢箱梁高架桥为背景,建立正常横隔板和变形横隔板的钢箱梁模型,针对横隔板分别与U肋、腹板加劲肋、底板开口肋连接焊缝3处细节,研究横隔板变形对各细节应力影响面和最不利工况下应力状态的影响,对比面内、外应力对各细节疲劳损伤的贡献。结果表明:横隔板变形对横隔板-腹板加劲肋细节和横隔板-底板开口肋细节应力影响范围和最不利位置影响显著,并且会导致各疲劳细节的拉应力和压应力有较大增幅,相对于正常横隔板而言更容易产生疲劳损伤;横隔板变形会导致各细节面外应力占比增大,促使面外应力成为各连接焊缝疲劳损伤的主要因素。  相似文献   

11.
下白石大桥为145 2×260 145m的大跨度预应力混凝土连续刚构桥,大桥施工监控中根据施工量测反馈数据,运用神经网络理论方法进行计算参数的识别,采用自适应控制系统理论,对大跨度桥梁的挠度进行预测,指导下阶段的施工;在箱梁适当位置放置温度传感器,实测箱梁水化温度在箱梁顶板、腹板以及底板的温度分布情况;研究混凝土材料水化热放热的特性,得到箱梁水化放热温度分布规律;选取箱梁控制截面,埋设应力(应变)传感器,并与理论值比较,得到了施工过程中连续刚构桥的应力变化规律;通过测量施工过程挠度以及温度随时间同步变化规律,得到了施工过程中温度对长悬臂箱梁挠度的影响规律;并在成桥后进行长期监测,得到了连续刚构桥桥面线形的长期变化规律.  相似文献   

12.
《公路》2015,(6)
现有不会出现拉应力的全预应力混凝土箱形梁的某些局部位置,经常产生不少严重的裂缝;针对这一现象,以我国桥规中温度梯度为基础,通过有限元软件Midas FEA模拟连续刚构桥0号块温度场的不同程度改良,对比仿真分析箱体结构在升降温条件下,纵、横向温度应力分布规律及其改良幅度;并研究了温度梯度不同改良程度下,箱梁顶板温度应力沿顶板高度的分布情况。得出结论,当箱梁内外温差由规范的14℃改良为10℃与5℃时,温度应力改良幅度为分别为原来的28%与64%左右,改良幅度较明显;箱体结构的温度主应力主要分布在表层20cm内,为表层应力。  相似文献   

13.
大跨PC连续刚构桥的0~#块可视为大体积混凝土,因此水泥水化热所产生的热量会使结构升温,导致刚构桥0~#块早期可能会生成温度裂缝,从而影响桥梁整体的安全性及耐久性。依托红岩溪特大桥,采用ANSYS软件瞬态热分析法计算在外界温度影响下0~#块水化热温度场,并将结果与实测数据作比较,吻合度较好,将温度场施加至结构中,计算出应力场。由结果可知:0~#块各位置板厚度越大,中心位置温度峰值越大,达到最大值时间越长。水化热产生的最大主拉应力在3.20~4.59 MPa之间,超过了混凝土设计抗拉强度,因此文中提出在大跨PC连续刚构桥0~#块中采用新型硅粉聚丙烯纤维混凝土材料,以其良好的早期抗拉强度,能够较大的改善结构的抗裂性能。  相似文献   

14.
大跨径连续刚构桥主跨底板合龙预应力束的空间效应研究   总被引:13,自引:0,他引:13  
潘钻峰  吕志涛 《世界桥梁》2006,(4):36-39,63
对大跨径连续刚构桥中跨底板混凝土在底板预应力筋作用下可能纵向开裂的现象进行了分析,阐述了产生这种现象的力学机理。根据一座跨径布置为140 m 268 m 140 m的单箱单室预应力连续刚构桥的结构与设计特点,对该桥在底板预应力作用下的空间效应不利影响进行了分析,提出了避免跨中箱梁底板纵向开裂、底板混凝土向下崩出和腹板竖向拉应力过大的建议,可为大跨度连续刚构桥的设计提供参考。  相似文献   

15.
以广西某高速公路连续刚构桥为实例背景,针对跨中合龙段底板张拉后,左中跨某节段底板混凝土出现脱落病害,推导了径向力集度的计算公式,讨论了不同曲线次数对底板径向力集度的影响。采用通用有限元程序Ansys对局部箱梁模型进行了非线性有限元分析,结果发现波纹管向上偏离设计位置产生的集中径向力使得脱落部位的竖向拉应力增大,同时横向拉应力和切应力均处于最不利水平,致使脱落病害出现。  相似文献   

16.
为了解正交异性钢桥面板横隔板与U肋焊接处残余应力分布特征,明确横隔板弧形切口疲劳开裂机理,采用热-结构耦合方法建立横隔板-U肋焊接连接的热弹塑性有限元模型,通过"生死单元"技术模拟焊缝的填充过程,得到焊接温度场与应力场,分析横隔板焊缝和弧形切口处残余应力的分布规律。结果表明:横隔板焊趾处纵向残余应力为拉应力,峰值为345 MPa,横向残余应力在焊缝开始位置和尾部区域为拉应力,在焊缝中间应力水平较低;横隔板弧形切口附近残余应力变化剧烈,且沿切口弧线长度和钢板厚度分布不均匀;从切口顶点到起弧点位置,残余应力从压应力变化为拉应力,起弧点处应力峰值为231 MPa;焊接引起的焊缝尾部高水平残余应力是导致横隔板弧形切口疲劳开裂的关键因素。  相似文献   

17.
通过对某波腹板钢箱梁桥进行模型计算分析,得到不同日照工况下箱梁横向应力变化规律,认为日照荷载容易在箱梁顶板产生较大的拉应力,导致顶板混凝土开裂,并对日照荷载对波腹板钢箱梁剪力滞后影响进行了分析。  相似文献   

18.
为研究新型UHPC连续箱梁桥面体系的受力特性,以广东清新大桥石角侧跨堤引桥为工程背景进行试设计,建立空间有限元模型进行桥面体系静力计算,以此为基础开展了1∶2缩尺模型试验和非线性有限元模拟,并对影响开裂应力的主要因素进行了参数分析。研究结果表明:UHPC箱梁试设计方案整体计算满足要求,正常使用极限状态桥面体系计算时,纵向未出现拉应力,横隔板上弦板底面最大横向拉应力为11.3 MPa。缩尺模型试验结果表明,桥面体系中横隔板上弦板下缘名义开裂应力为15.4 MPa,极限状态名义应力为68.2 MPa。开裂应力和承载能力均满足工程要求。横向受力抗裂性能参数分析表明,采用法国UHPC结构规范计算名义开裂应力是可行的,增大配筋率整体上可以提高上弦板下缘开裂应力,在实桥中,上弦板下缘钢筋直径建议取值■12~■40。增加上弦板高度可以提高抗裂安全性,当试验模型上弦板高度从24 cm增加到36 cm时,抗裂安全系数从1.24增加到1.52。  相似文献   

19.
韦景光 《公路》2023,(9):232-237
以某大跨径PC连续刚构桥为依托,通过ABAQUS软件建立模型并分析PC连续刚构桥箱梁腹板混凝土开裂原因及竖向预应力施加顺序对腹板混凝土开裂的影响,结果表明:腹板混凝土开裂原因之一在于箱梁悬臂节段数量增加引起腹板混凝土内竖向拉应力增大所致,竖向预应力的施加可限制腹板混凝土内竖向拉应力的发展;滞后张拉工艺中,由于竖向预应力的滞后施加,无法起到提前遏制腹板混凝土竖向拉应力发展,从而导致腹板混凝土开裂风险较高。将竖向预应力施加顺序调整至纵向预应力施加之前,能有效降低腹板混凝土主拉应力值,减小腹板混凝土开裂风险。  相似文献   

20.
针对实际工程梅山龙宫资水大桥大跨柱式墩预应力混凝土连续刚构桥,采用结构有限元软件,按施工过程,建立分析模型,分析获得了箱梁累计挠度和关键位置的应力。结果表明:成桥后考虑10 a徐变作用,箱梁最大累计挠度产生在边跨,其值为-54 mm;成桥阶段,箱梁全截面受压,其底板压应力大于顶板压应力,最大值为-10. 1 MPa,结构强度满足要求。计算成果为大桥悬臂施工线形、应力监控提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号