首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究目的:地铁车辆段具有道岔和轨道接头多、曲线半径小、列车行车速度低等特点,其轨道结构的减振设计一般参照地铁正线,实际减振特性尚不明确。为掌握双层非线性扣件在车辆段内轨道道岔运用效果,对车辆段内减振道岔进行试验研究。研究结论:(1)双层非线性减振扣件能够减小钢轨传至扣件减振层以下的道床和盖板地面处振动,但扣件减振层以上的钢轨处振动显著增大;车速20 km/h时,辙叉处道床和盖板地面分别衰减6.6 dB和4.1 dB,钢轨处增大8.6 dB;(2)采用双层非线性扣件后,钢轨振动在大部分频段范围都增大,其中在10~20 Hz最为显著;道床在60~400 Hz之间衰减比较明显;盖板地面处衰减主要在20~60 Hz之间,但在5 Hz和10 Hz附近出现一定的放大;(3)减振道岔处钢轨-道床传递损失明显大于普通道岔,振动从钢轨传至道床处时,在1 000 Hz范围内都发生了衰减,其中在20 Hz以内衰减最为显著,衰减量在35 dB以上;(4)本研究成果可应用于铁道工程减振设计领域。  相似文献   

2.
地铁轨道道床减振垫减振性能研究   总被引:1,自引:0,他引:1  
道床减振垫已在郑州地铁轨道上得到了实际应用。通过进行轨道静态锤击试验及在车辆正常运行条件下的轨道动态变形和振动测试,分析道床减振垫的减振性能。结果表明:道床减振垫实际应用时的固有频率为25.4 Hz,道床减振垫竖向振动频率在250 Hz、横向振动频率在100 Hz处的振动衰减趋势较大;在20~400 Hz频率范围内,采用道床减振垫相对于不采用道床减振垫的平均减振量为24.4 dB;在车辆正常运行条件下,轨道的动态变形满足列车安全运行的要求,隧道壁的竖向振动相对于不采用道床减振垫减少了15.7 dB;在静态和动态测试条件下,采用道床减振垫的减振量基本一致,具有较好的减振效果。  相似文献   

3.
某工程因土建施工偏差较大,出现了轨道铺设空间严重不足、无法铺设钢弹簧浮置板的情况.提出了在减振垫浮置道床的基础上铺设嵌套式减振扣件的减振组合方案.通过建立车辆-轨道-结构耦合模型,进行动力仿真计算,分析得出其行车安全性、平稳性指标均合格;并组织了实车减振效果测试,测试表明减振组合方案减振效果良好,可减振16 dB以上.  相似文献   

4.
张欢 《铁道建筑》2020,(4):55-58,71
为减轻列车对广深港高速铁路狮子洋水下隧道基础的影响,须采取减振措施,因此开展动车组最高时速310 km CRTSⅠ型减振板式无砟轨道的减振性能试验研究。试验结果表明:设置减振垫层后砂浆层受力变大;轨道板与底座间垂向位移随减振垫层刚度增大而减小,轨道板与底座间横向位移较小,轨道板横向稳定性较好;减振垫层刚度0.04和0.06 N/mm^2地段,隧道边墙处插入损失最大值为20dB,轨道板至底座传递损失最大值为35.3 dB,底座和仰拱的振动加速度级较小,高频成分的振动抑制效果较好,但减振垫层刚度为0.04 N/mm^2时轨道板振动加速度级有所增大。综合考虑,减振垫层刚度以0.06 N/mm^2为宜。  相似文献   

5.
为了得到地下线路采用橡胶减振垫轨道的减振效果,建立车辆—轨道—隧道—土层—建筑物的三维有限元-无限元耦合模型,分别计算采用普通整体道床轨道和橡胶减振垫轨道2种工况下沿线建筑物的三向振动加速度振级。结果表明:列车运行引起的建筑物振动,以垂直于线路方向的横向振动为主,其次为垂向振动,平行于线路方向的纵向振动最小;采用橡胶减振垫轨道后,楼柱节点的横向、纵向加速度振级明显减小,且随着距地面高度的增高,降幅基本一致,约为8.9 dB;采用普通整体道床轨道和橡胶减振垫轨道时,楼板垂向振动规律基本一致,即随着楼层的增加,楼板垂向振动呈现先减后增的趋势,但是差别甚小。与普通整体道床轨道相比,橡胶减振垫轨道可以降低楼板垂向加速度振级约9 dB。  相似文献   

6.
板式减振垫轨道能降低列车运营对周围环境的影响,确保城市轨道交通引起的振动满足环保要求,在高等减振设计中普遍采用。基于轮轨耦合作用,建立城轨列车-板式减振垫轨道-下部基础有限元模型,对不同减振垫刚度下板式轨道结构进行模态、谐振分析,并对其减振性能进行研究。研究表明:(1)减振垫轨道结构的固有频率随着减振垫刚度的增大而增大,振型包括轨道板的平动、转动、弯曲和钢轨的侧翻、扭转;(2)钢轨至轨道板的传递损失集中在15~30 d B,而轨道板至基底的传递损失峰值达51 d B;(3)车体加速度、轮轨垂向力、钢轨加速度、基底垂向加速度随着减振垫刚度的增大呈增大趋势,而钢轨位移、轨道板加速度和位移呈减小趋势;(4)板式减振垫轨道在25~100 Hz频段的减振效果较好,特别是1/3倍频程中心频率63 Hz处,插入损失达24 d B;在1~25 Hz频段的减振效果一般,而且局部频段出现振动放大的情况。  相似文献   

7.
为了更好地进行聚氨酯减振浮置板轨道结构的选型设计,建立车辆-轨道系统动力分析模型,研究轨道板厚度、扣件刚度、减振垫刚度对聚氨酯减振浮置板轨道结构动力响应的影响。结果表明:轨道板厚度增大会导致钢轨加速度相应增大,而钢轨位移、轨道板加速度、基底加速度显著减小;扣件刚度减小会导致钢轨垂向位移增大,而钢轨、轨道板、基底加速度不同程度减小;减振垫刚度增大会导致钢轨垂向位移、垂向加速度减小,而轨道板、基底垂向加速度平稳增大。结合工程实际,建议轨道板厚度取260~300 mm,扣件刚度取20~40 kN/mm,减振垫刚度取0.02~0.03 MPa/mm。  相似文献   

8.
地铁轨道减振   总被引:3,自引:0,他引:3  
近年来,在我国大城市内大力发展“安全”、“正点”、“快捷”“舒适”的城市轨道交通系统己为社会各界形成共识。但城市轨道交通也随之给城市带来诸如超标的振动和噪音等污染,影响了人们的正常工作和生活。因此,如何减少城市轨道交通带来的振动和噪音,给科研设计人员提出了崭新课题。  相似文献   

9.
为了研究一种新型分离式压缩型中等减振扣件在城市轨道交通应用中的减振效果,为城市轨道交通设计提供参考,对铺设新型中等减振扣件的常州地铁一号线进行现场测试,将测试结果与GJ-3型减振扣件和DTⅢ2型扣件进行对比。测试结果表明:新型中等减振扣件的垂向和横向位移相较于GJ-3型减振扣件有所增大,扣件刚度有所减小;在3种不同的测试速度下,新型中等减振扣件的隧道壁减振效果相对于GJ-3型减振扣件分别减小了6.6、4.6、3.5 dB,减振效果显著;1/3倍频程分析表明,新型中等减振扣件在50~200 Hz振动加速度级降低明显;在3种不同的测试速度下,隧道壁最大加速度级衰减值分别为21.58、19.12、23.05 dB。  相似文献   

10.
地铁减振板式轨道作为一种新型轨道结构,具有质量高、施工快、维修少等特点,在地铁线路中逐渐得到推广应用。为揭示地铁板式轨道减振效果,选取天津地铁5号线板式轨道、现浇整体道床断面,采用现场试验和数值模拟方法,对其动力学行为和减振特性进行研究。结果表明:与现浇整体道床相比,地铁板式轨道降低了轮轨横、垂向力和安全性指标,有利于行车安全;由于板式轨道整体刚度较低,钢轨垂向位移略有增加;板式轨道与整体道床结构振动由上至下依次减小,且板式轨道减小幅度更为显著;与现浇整体道床相比,除轨道板振动加速度增大外,其余结构加速度均一定程度减小;板式轨道隧道壁处时域上减振明显,频域上全频段减振,最高减振达16.92 dB。  相似文献   

11.
本文以空气弹簧与轴箱弹簧等为实例,介绍了最近的减振橡胶的应用动向、耐久性评价及提高耐久性的研究成果,阐述了应用减振橡胶与环保的关系。  相似文献   

12.
为了研究不同等级复合减振预制道床的减振效果,以青岛新建地铁 4 号线张彭区间隧道段为研究对象, 测试 70 km/h 的速度下高、中等级复合减振垫预制道床轨道和普通道床轨道的振动及位移响应,通过引入铅锤 Z 振级分频振级均方根值及 Z 振级传递损失进行综合评价,分别在时域和频域内对 2 种减振等级的复合减振垫预制 道床轨道和普通道床轨道的振动特性进行对比分析,结果表明:①3 种不同减振类型道床轨道的隧道壁分频振级 均在 50~80 Hz 处达到最大,高等、中等减振道床与普通道床相比较,其减振效果(分频振级均方根差值平均值) 分别为 13.9 dB 和 8.5 dB;道床与隧道壁之间的 Z 振级传递损失值分别为 45.8 dB 和 35.1 dB;②高等、中等减振 道床以及普通道床在实际运营过车时,道床垂向位移分别为 2.298、0.265 和 0.058 mm,道床横向位移分别为 0.058、 0.025 和 0.019 mm。多等级减振通用预制道床对 20 Hz 以上振动减振效果明显,同时可根据不同需求自由选择和 更换减振等级,对减振通用预制道床的发展具有一定的指导意义。  相似文献   

13.
<正>为降低客车车体一阶弯曲振动,日本铁道综合技术研究所开发了车体减振系统,这是由一系弹簧悬挂装置的减振控制研究人员利用新干线电动车,经运行试验,确认了该系统有良好的减振效果。不过这些试验都是在空车状态下进行的。通常,随着乘客数量的不同,车体的弹性振动特性会发生改变,这与单纯地装载重物(如铁块)的情况不同。因此,由于乘客数量导致的车体振动特性的变化,有可能对这种减振系统的减振效果造成影响。基于这个因  相似文献   

14.
涂勤明 《铁道建筑》2020,(5):135-138
对中等减振扣件轨道、梯形轨枕轨道、钢弹簧浮置板轨道、普通整体道床轨道进行环境振动现场实测,对比分析地铁列车通过时不同轨道的钢轨、道床、隧道壁振动加速度(垂向、横向)及钢轨动态变形(垂向、横向).结果表明:4种类型轨道的钢轨振动加速度相差不大;中等减振扣件轨道的道床振动加速度小于普通整体道床轨道,另外2种减振轨道明显大于普通整体道床轨道;钢弹簧浮置板轨道的隧道壁振动加速度明显小于其他轨道;钢弹簧浮置板轨道减振效果最好;中等减振扣件轨道的钢轨动态变形明显大于其他轨道.  相似文献   

15.
无砟轨道的整体刚度比有砟轨道大,为降低列车通过时的轮轨振动以及环境振动,有关无砟轨道的减振措施应运而生,考虑3种减振垫组合:轨下减振垫、轨下减振垫+枕下减振垫和轨下减振垫+板下减振垫。为研究3种减振垫组合情况下的减振性能,基于FEM方法,建立3种组合情况下的振动力学模型,对其进行谐响应分析,结果表明:轨下减振垫+枕下减振垫组合和轨下减振垫+板下减振垫组合不利于减少轮轨(钢轨)振动;轨下减振垫+板下减振垫组合有助于降低200 Hz频率以下环境(底座板)振动,最多能降低底座板振动加速度级为11.98 d B,频率越低减振能力越强;轨下减振垫+枕下减振垫组合仅能略微降低20 Hz频率以下环境(底座板)振动,最多能降低底座板振动加速度级为5.46 d B;相关计算和分析可为合理设计减振垫位置提供依据。  相似文献   

16.
为指导制定我国浮置板轨道减振垫设计规范,探究德国浮置板轨道减振垫规范(DIN 45673-7:2010)以及我国浮置板轨道减振垫暂行技术条件(TJ/GW 121-2014)的科学性。以聚氨酯与橡胶减振垫为研究对象,依据上述规范开展室内测试,建立车辆-轨道刚柔耦合模型与轨道-隧道-土层耦合有限元模型,开展减振垫单一预压、单一频率减振效果评价方法的影响研究,探讨规范中减振垫浮置板轨道减振效果评价的合理性。研究结果表明:预压荷载大小(即列车轴重)与有载条件下浮置板轨道固有频率(即考虑轮轴参振的浮置板轨道系统固有频率)是控制减振垫浮置板轨道减振效果的关键因素;针对刚度近似线性且频变效应较小的橡胶减振垫,采用单一预压、单一频率刚度的评价方法对其减振效果评价影响较小。橡胶垫分别采用第2和第3预压参数时,隧道基底处Z振级插入损失分别为14.0 dB和13.0 dB,约有1 dB差异;对于刚度非线性明显的聚氨酯减振垫而言,不同预压评价方法的差异较大。聚氨酯减振垫分别采用第2,第3预压参数时,隧道基底处Z振级插入损失分别为10.1 dB和14.6 dB,可达4.5 dB或更大。建议针对不同运营情况,进一...  相似文献   

17.
高速铁路减振型无碴轨道减振技术的研究   总被引:4,自引:1,他引:3  
通过对所研究的具有双减振胶垫的无碴轨道在高速运营条件下的多种工况的理论计算的分析,确定了其合理的轨道组合刚度,使之与有碴轨道总刚度接近,动力响应最佳。选择和设计了符合要求的减振部件和轨道结构。通过现场铺设、动态测试和室内模拟试验,验证了其安全性及减振性能。  相似文献   

18.
以成都—都江堰高速铁路工程为背景,通过现场测试试验,研究桥上无砟轨道铺设橡胶减振垫的减振效果.结果表明:铺设橡胶减振垫后,减振垫上钢轨和轨道板的振动略有放大,但影响甚微,而减振垫下底座板、桥梁及地面的振动显著降低,其中底座板的最大振动加速度降低了85%左右;时域内,在距线路中心线0,15和30 m处地面的最大竖向加速度振级均降低了9.5dB左右;频域内,在0~6.3 Hz频段内,橡胶减振垫的减振效果不明显;在8~20 Hz频段内,由于与轨道—桥梁—大地系统本身的自振频率重合,反而放大了地面的振动;在25~100 Hz频段内,减振作用明显,且距线路中心线越远,减振效果越显著,但距线路中心线不同距离处对应最大减振作用的频段和插入损失值不同,0m处最大减振作用出现在31.5 Hz频段,插入损失值为7.8 dB,15和30 m处最大减振作用均出现在40 Hz频段,插入损失值分别为13.6和16.4 dB.可见,橡胶减振垫能够对25 Hz以上频段的振动起减振作用.  相似文献   

19.
文章以深圳市某新开通运营地铁线路装配式减振轨道为研究对象,对列车通过时轨道结构的振动进行测试,并对测试数据进行对比分析,得到不同减振措施条件下的振动特性及减振效果。另外,通过有限元仿真模拟得到不同减振措施的减振效果,并与实测数据进行对比验证。相关研究可为今后新建地铁减振措施的采用以及既有线路的维修以及改造提供参考。  相似文献   

20.
为了控制由高架轨道交通系统与环境的振动传递而引起的振动污染,提出将双端质量这一新型减振元件引入到高架轨道桥墩支座减振控制中。在建立了基于双端质量的高架桥墩力学模型的基础上,以最小化振动传递为目标进行仿真计算,对不同参数条件下支座结构的振动传递控制性能进行分析,得出最优参数条件下对应的桥墩的最优振动传递控制性能。计算结果表明:通过引入双端质量的惯性质量力,可以有效减缓轨道与桥墩之间的振动传递,在高架轨道系统中可以有效提升支座的减振性能,为城市高架轨道交通系统的设计提供了新的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号