首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对在嵌入式设备上部署神经网络模型存在受限于设备体积与计算性能的影响而难以保证神经网络模型的推理实时性的问题,提出了一种基于YOLOv5-nano的前车检测改进方法(HS-YOLO)。首先,采用硬拟合函数h-swish来取代SiLU激活函数,在激活关系相似的情况下提高模型推理速度;此外,引入SIOU边界框回归损失来替代CIOU损失,提高模型的训练速度与推理精度。为进一步验证改进模型的性能,使用SSD、YOLOv4-tiny、基础模型YOLOv5-nano与改进的HS-YOLO网络在相同训练条件下进行训练,得到最优模型并在测试集上进行推理测试。结果表明:HS-YOLO模型的精确率、召回率及AP0.5较原模型YOLOv5-nano分别提升了0.76%、0.43%、0.41%;在推理速度方面,HS-YOLO模型的单张图片推理耗时为7.8 ms,实时推理帧数为128 FPS,在所有模型中表现最优,较原模型分别提高了0.7 ms和10 FPS。  相似文献   

2.
道路目标检测环节是自动驾驶领域的关键技术之一,随着人工智能的发展应用逐渐广泛。文章基于YOLOv5网络提出一种新的目标检测方法,改进包括融合了ShuffleNet V2中的模块,使用GhostConv改造了传统的Conv模块等。先在不同道路环境中实时采集视频流,并进行图片和视频流的标注。在主干网络中融入ShuffleNet V2中的模块并使用GhostConv模块改进Conv模块,在降低模型权重的同时对目标检测精度影响较小。将标注完成后的图片输入改进后的YOLOv5网络进行训练,并将得到后的模型与Deep SORT算法结合,进行目标检测追踪。实验结果表明,所得结果权重大小下降许多,而目标检测精确度有所上升。改进后的网络更加轻便,易于部署在边缘嵌入式设备上。  相似文献   

3.
车辆目标检测是自动驾驶环境感知的重要组成部分。近年来随着深度学习在目标识别领域取得重大突破,基于深度学习的车辆目标检测算法逐渐成为该领域的研究热点。论文对当前主流的两阶段车辆目标检测算法和单阶段车辆目标检测算法进行简要介绍,分析了其中几种具有代表性的卷积神经网络算法的优缺点,最后总结目前车辆目标检测存在的问题以及未来的发展方向。  相似文献   

4.
5.
当前时有发生因轮胎面缺陷导致汽车在行驶中发生严重的交通事故,轮胎面缺陷智能检测对避免这类交通事故的发生具有重要意义。深度学习技术被越来越多地用于目标检测领域,文章基于卷积神经网络模型YOLOv5提出一种轮胎面缺陷智能检测方法。首先建立具有4种轮胎面缺陷特征的数据集,然后通过YOLOv5网络训练数据集,最后用训练好的网络模型在测试集上检测。实验结果显示,在检测轮胎面缺陷任务中,YOLOv5网络模型的平均检测精度(mAP)达到65.4%,检测速度可达到38FPS,相较于YOLOv4网络模型与Faster-RCNN网络模型分别提高约4.1%与31.6%。对进一步研究更有效的轮胎面缺陷智能检测方法提供了参考。  相似文献   

6.
从监控图像中准确检测船舶对于港区水域船舶交通智能监管具有重要意义。为解决雾霾条件下传统YOLOv5目标检测算法对船舶红外图像检测准确率低、小目标特征提取能力弱等问题,提出了基于Swin Transformer的改进YOLOv5船舶红外图像检测算法。为扩大原始数据集的多样性,综合考虑船舶红外图像轮廓特征模糊、对比度低、抗云雾干扰能力强等特点,改进算法提出基于大气散射模型的数据集增强方法;为增强特征提取过程中全局特征的关注能力,改进算法的主干网络采用Swin Transformer提取船舶红外图像特征,并通过滑动窗口多头自注意力机制扩大窗口视野范围;为增强网络对密集小目标空间特征提取能力,通过改进多尺度特征融合网络(PANet),引入底层特征采样模块和坐标注意力机制(CA),在注意力中捕捉小目标船舶的位置、方向和跨通道信息,实现小目标的精确定位;为降低漏检率和误检率,采用完全交并比损失函数(CIoU)计算原始边界框的坐标预测损失,结合非极大抑制算法(NMS)判断并筛选候选框多次循环结构,提高目标检测结果的可靠性。实验结果表明:在一定浓度的雾霾环境下,改进算法的平均识别精度为93.73%,平均召回率为98.10%,平均检测速率为每秒38.6帧;与RetinaNet、Faster R-CNN、YOLOv3 SPP、YOLOv4、YOLOv5和YOLOv6-N算法相比,其平均识别精度分别提升了13.90%、11.53%、8.41%、7.21%、6.20%和3.44%,平均召回率分别提升了11.81%、9.67%、6.29%、5.53%、4.87%和2.39%。综上,所提的Swin-YOLOv5s改进算法对不同大小的船舶目标识别均具备较强的泛化能力,并具有较高的检测精度,有助于提升港区水域船舶的监管能力。  相似文献   

7.
文章是以MTALAB软件为主要平台,基于深度学习建立一种多目标车辆检测及追踪的方法。首先建立一个基于深度学习的模型用于训练的不同场景的车辆数据集,并对所采集的数据集进行标注和格式归一化处理。然后使用K-means聚类算法进行锚框,建立以YOLOv3SPP算法为主的神经网络框架,采用非极大值拟制(NMS)算法得到最终的预测框。最终训练神经网络模型,再对该模型进行测试和评定。经实验可以得出该模型能够准确地检测及追踪多目标车辆。  相似文献   

8.
近年来,社会经济持续高速的发展,人均汽车占有量迅速增加。为了避免车辆追尾等事故发生,结合道路环境下目标检测的难点及要求,文章选择基于卷积神经网络的YOLOv3算法,并针对YOLOv3中使用的k-means聚类算法初始时随机选择质心这一不稳定性以及原本的darknet53网络层数较低导致精度不是很高的问题,引用k-means++聚类算法对k-means聚类算法进行优化,并将darknet53替换成特征提取能力更强的resnet101,进行算法优化。实验结果显示优化后的算法mAP提高了12.2%,基本符合实际应用检测的精度要求。  相似文献   

9.
文章针对目前汽车生产线中焊接检测自动化程度较低、检测鲁棒性较差等问题,利用深度学习算法的特征提取能力,提出了一种基于改进的YOLOv3模型的焊缝缺陷检测方法.该方法基于连通域提取工件上的焊缝图像,并将提取到的焊缝图像输入到改进的深度学习模型中进行训练,通过融合大、中、小3个尺度的感受野,实现不同尺度焊缝缺陷的高精度识别...  相似文献   

10.
基于深度学习的目标检测算法能够取得良好的检测速度离不开高性能GPU硬件设备的支持。然而,在智能车中搭载高性能、高功耗、大尺寸的硬件设备与汽车的长续航理念不符。因此,文章以YOLOv3目标检测算法为基线模型进行改进,提出轻量化的目标检测模型Mobile-YOLO,并在采集制作的地下停车场数据集中进行训练测试。实验结果表明,提出了Mobile-YOLO相较于YOLOv3,在平均精度均值略微提升的情况下,检测速度提升了47.1%。在移动端平台TX2上每秒能够检测31张图像。  相似文献   

11.
针对当前机器视觉识别中车流量检测的精度问题,以YOLOv7人工智能算法为基础,通过视觉跟踪并叠加注意力机制,提出一种基于YOLOv7和Deep SORT的改进型车流量智能检测方法。通过将注意力模块GAM与YOLOv7网络进行融合增强检测网络的特征提取能力;同时在改进后的YOLOv7网络中引入Deep SORT跟踪算法以改善车辆间相互遮挡导致复检漏检问题。实验选取重庆市渝中区经纬大道双向六车道为研究对象,在新铺社天桥上采用固定相机连接移动笔记本电脑的方式进行数据采集以及算法验证,为了保证算法的可重复性,分别选取早高峰、午平峰和晚高峰3个时段分别录取了5 min的交通流视频。利用在交通视频中通过设置虚拟检测线,让新算法在车辆检测的同时对车辆运行轨迹进行跟踪,当车辆经过检测线时记录车辆的身份编号,以此来实现交通视频的车流量监测与跟踪计数。实验结果表明:改进后的新算法相比于原YOLOv7算法在车辆检测方面平均精度提高了2.3%,视频车流量统计的精度提高了8.2%。  相似文献   

12.
传统的夜间车辆检测基于车灯特征的提取和识别,这类方法容易发生误判、检测精度和检测实时性不高。针对上述问题,本文研究了基于改进Mask RCNN(mask RCNN-night vehicle detection,Mask RCNN-NVD)的夜间车辆检测算法。将残差网络(residual network,ResNet)结构中的普通卷积修改为数量为16组的分组卷积,通过16组1×1卷积实现通道数叠加,将网络参数降至普通卷积的1/16,提升检测速度,并实现与普通卷积相同的效果;将通道注意力机制模块(squeeze-and-excitation,SE)嵌入ResNet结构中,通过2个全连接层构建瓶颈结构,将归一化权重加权到各通道特征,增强网络表征能力;在特征金字塔网络(feature pyramid networks,FPN)后加入自底向上结构,将底层特征强定位信息传递到高层语义特征中;加入自适应池化层,根据区域候选网络(region proposal network,RPN)产生的候选区域分配至不同尺度特征图中,并在底层特征与各阶段最高层特征之间加入跳跃连接结构,实现缩减模型参数的同时保留...  相似文献   

13.
14.
15.
准确的多目标感知系统是自动驾驶技术的关键。本文提出了一种基于相机与激光雷达融合的多目标检测算法。针对相机传感器无法获得准确的目标距离等深度信息,激光雷达无法获得准确的目标类别信息的问题,首先采用嵌入自适应特征融合模块的YOLOv7网络处理相机数据,同时对激光雷达数据进行点云预处理以消除无用的噪声点;其次,利用坐标变换将激光点云数据和相机数据转换到像素坐标系中;最后,采用基于ROI感兴趣区域的方法对点云进行聚类处理,以参数加权的方式融合两种传感器的检测结果。实验结果表明,嵌入改进YOLOv7网络的融合算法能够检测出更加准确的目标信息。  相似文献   

16.
基于视觉的车辆检测作为辅助驾驶系统的输入,对智能车辆预警和决策起着重要的作用。针对目前传统深度卷积神经网络在基础网络设计和物体检测网络构建的不足,提出一种对经典的深度残差网络进行改进方法,提出带局部连接的残差单元,并以此构建带局部连接的残差网络;同时,提出基于共享参数的多分支网络和双金字塔语义传递网络形式,提升不同语义级别特征融合前的语义级别,以及实现深度融合不同分辨率特征图的语义。经过测试,车辆的检测准确率最高达到95.3%,且具备较高的实时性和环境适应性。  相似文献   

17.
目标检测的目的是识别图像中特定物体的类别和图像中的位置,实际可以应用于行人、物体、人脸检测和智能交通等人工智能领域,现如今,基于深度学习的神经网络技术已经逐渐融入人们的生活,深度卷积神经网络也在计算机视觉各个领域取得了显著的成就.文章将介绍基于深度学习的目标检测算法的研究进展、常用数据集特点以及性能指标评价关键参数,系...  相似文献   

18.
赵东宇  赵树恩 《汽车工程》2023,45(7):1112-1122
针对图像和原始点云三维目标检测方法中存在特征信息残缺及点云搜索量过大的问题,以截体点网(frustum PointNet, F-PointNet)结构为基础,融合自动驾驶周围场景RGB图像信息与点云信息,提出一种基于级联YOLOv7的三维目标检测算法。首先构建基于YOLOv7的截体估计模型,将RGB图像目标感兴趣区域(region of interest, RoI)纵向扩展到三维空间,然后采用PointNet++对截体内目标点云与背景点云进行分割。最终利用非模态边界估计网络输出目标长宽高、航向等信息,对目标间的自然位置关系进行解释。在KITTI公开数据集上测试结果与消融实验表明,级联YOLOv7模型相较基准网络,推理耗时缩短40 ms/帧,对于在遮挡程度为中等、困难级别的目标检测平均精度值提升了8.77%、9.81%。  相似文献   

19.
为了提高毫米波雷达对前方车辆检测的准确性,本文提出一种基于机器学习的前方车辆检测方法。结果表明,该方法满足智能客车环境感知系统对于实时性和准确性的要求。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号