首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
This paper is concerned with the problem of designing a decentralized consensus protocol for platooning of non-identical vehicles in the presence of heterogeneous time-varying communication delays. The proposed control protocol makes use of a state feedback and to this aim drivetrain dynamics are modeled as third-order linear systems. Necessary and sufficient conditions for convergence and exponential stability, derived by using an appropriate Krasovskii functional, demonstrate the ability of the platoon in reaching the required regime with an exponentially bounded behavior. The proposed LMI-based approach allows to estimate both delay margin and decay rate. Moreover, convergence is proven under switching communication network topologies by means of a Lyapunov-Razumikhin function, and the assessment of a string stable behavior has been also theoretically investigated. High-fidelity simulations with Plexe show the effectiveness of the theoretical results in different driving conditions and in the presence of external disturbances and communication impairment. Different communication channel models are used in the validation stage to further prove robustness of the proposed methodology with respect hard delay and packets losses.  相似文献   

2.
Vehicular networks represent a research area of significant importance in improving the safety, efficiency and sustainability of transportation systems. One of the key research problems in vehicular networks is real-time data dissemination, which is crucial to the satisfactory performance of many emergent applications providing real-time information services in vehicular networks. Specifically, the two issues need to be addressed in this problem are maintenance of temporal data freshness and timely dissemination of data. Most existing works only considered periodical data update via backbone wired networks in maintaining temporal data freshness. However, many applications rely on passing vehicles to upload their collected information via wireless network, which imposes new challenges as the uplink data update will have to compete with the downlink data dissemination for the limited wireless bandwidth. With such observations, we propose a temporal information service system, in which vehicles are able to collect up-to-date temporal information and upload them to the roadside units (RSU) along their trajectories. Meanwhile, RSU can disseminate its available data items to vehicles based on their specific requests. Particularly, in this paper, we first quantitatively analyze the freshness of temporal data and propose a mathematical model to evaluate the usefulness of the temporal data. Next, we give the formulation of the proposed real-time and temporal information service (RTIS) problem, and prove the NP-hardness of this problem by constructing a polynomial-time reduction from 0–1 knapsack problem. Subsequently, we establish a probabilistic model to theoretically analyze the tradeoff between timely temporal data update and requested data dissemination sharing a common communication resource, which provides a deeper insight of the proposed RTIS. Further, a heuristic algorithm, namely adaptive update request scheduling (AURS), is designed to enhance the efficacy of RTIS by synthesizing the broadcast effect, the real-time service requirement and the service quality in making scheduling decisions. The computational complexity and scalability analysis of AURS is also discussed. Last but not least, a simulation model is implemented and a comprehensive performance evaluation has been carried out to demonstrate the superiority of ARUS against several state-of-the-art approaches in a variety of application scenarios.  相似文献   

3.
Uncertainty of traffic network operations has been a subject of lively debate in the last decade. However, little effort has been put in developing control frameworks that are not only aimed at improving the average performance of the system, but also at improving the system robustness and reliability. In fact, it can be argued that most of the current control approaches are only aimed at improving the efficiency, which can even be counterproductive from a robustness point of view. The main contributions of this article is the proposition of a new control framework based on the notion of controlled Markov processes, which explicitly takes into account the uncertainty in predicted traffic conditions and system performance. Furthermore, in contrast to traditional optimal control approaches, the objective function can include general statistic of the random system performance, such as the mean, standard deviation or 95‐percentile. The contribution aims to make clear how different performance function specifications yield different control strategies. This is shown for a relatively simple case study.  相似文献   

4.
    
Vehicular networks supporting cooperative driving on the road have attracted much attention due to the plethora of new possibilities they offer to modern Intelligent Transportation Systems. However, research works regarding vehicular networks usually obviate assessing their proposals in scenarios including adverse vehicle densities, i.e., density values that significantly differ from the average values, despite such densities can be quite common in real urban environments (e.g. traffic jams). In this paper, we study the effect of these hostile conditions on the performance of different schemes providing warning message dissemination. The goal of these schemes is to maximize message delivery effectiveness, something difficult to achieve in adverse density scenarios. In addition, we propose the Neighbor Store and Forward (NSF) scheme, designed to be used under low density conditions, and the Nearest Junction Located (NJL) scheme, specially developed for high density conditions. Simulation results demonstrate that our proposals are able to outperform existing warning message dissemination schemes in urban environments under adverse vehicle density conditions. In particular, NSF reduces the warning notification time in low vehicle density scenarios, while increasing up to 23.3% the percentage of informed vehicles. As for high vehicle density conditions, NJL is able to inform the same percentage of vehicles than other existing approaches, while reducing the number of messages up to 46.73%.  相似文献   

5.
    
The Cooperative Awareness Basic Service and Decentralized Environmental Notification Basic Service have been standardized by the European Telecommunications Standards Institute (ETSI) to support vehicular safety and traffic efficiency applications needing continuous status information about surrounding vehicles and asynchronous notification of events, respectively. These standard specifications detail not only the packet formats for both the Cooperative Awareness Message (CAM) and Decentralized Environmental Notification Message (DENM), but also the general message dissemination rules. These basic services, also known as facilities, have been developed as part of a set of standards in which both ISO and ETSI describe the Reference Communication Architecture for future Intelligent Transportation Systems (ITS). By using a communications stack that instantiates this reference architecture, this paper puts in practice the usage of both facilities in a real vehicular scenario. This research work details implementation decisions and evaluates the performance of CAM and DENM facilities through a experimental testbed deployed in a semi-urban environment that uses IEEE 802.11p (ETSI G5-compliant), which is a WiFi-like communication technology conceived for vehicular communications. On the one hand, this validation considers the development of two ITS applications using CAM and DENM functionalities for tracking vehicles and disseminating traffic incidences. In this case, CAM and DENM have demonstrated to be able to offer all the necessary functionality for the study case. On the other hand, both facilities have been also validated in a extensive testing campaign in order to analyze the influence in CAM and DENM performance of aspects such as vehicle speed, signal quality or message dissemination rules. In these tests, the line of sight, equipment installation point and hardware capabilities, have been found as key variables in the network performance, while the vehicle speed has implied a slight impact.  相似文献   

6.
Broadcast capacity of the entire network is one of the fundamental properties of vehicular ad hoc networks (VANETs). It measures how efficiently the information can be transmitted in the network and usually it is limited by the interference between the concurrent transmissions in the physical layer of the network. This study defines the broadcast capacity of vehicular ad hoc network as the maximum successful concurrent transmissions. In other words, we measure the maximum number of packets which can be transmitted in a VANET simultaneously, which characterizes how fast a new message such as a traffic incident can be transmitted in a VANET. Integer programming (IP) models are first developed to explore the maximum number of successful receiving nodes as well as the maximum number of transmitting nodes in a VANET. The models embed an traffic flow model in the optimization problem. Since IP model cannot be efficiently solved as the network size increases, this study develops a statistical model to predict the network capacity based on the significant parameters in the transportation and communication networks. MITSIMLab is used to generate the necessary traffic flow data. Response surface method and linear regression technologies are applied to build the statistical models. Thus, this paper brings together an array of tools to solve the broadcast capacity problem in VANETs. The proposed methodology provides an efficient approach to estimate the performance of a VANET in real-time, which will impact the efficacy of travel decision making.  相似文献   

7.
    
This paper discusses the use of the concept of dynamic programming to the determination of road construction needs using accessibility criteria. An attempt is made to specify political and social goals such as quality of life and equal opportunity as parameters of road dimensioning. The objective of the method which is illustrated by a case study is to determine minimal total costs for various threshold values of conceivable accessibility standards.  相似文献   

8.
    
In this paper we present a stochastic model for predicting the propagation of train delays based on Bayesian networks. This method can efficiently represent and compute the complex stochastic inference between random variables. Moreover, it allows updating the probability distributions and reducing the uncertainty of future train delays in real time under the assumption that more information continuously becomes available from the monitoring system. The dynamics of a train delay over time and space is presented as a stochastic process that describes the evolution of the time-dependent random variable. This approach is further extended by modelling the interdependence between trains that share the same infrastructure or have a scheduled passenger transfer. The model is applied on a set of historical traffic realisation data from the part of a busy corridor in Sweden. We present the results and analyse the accuracy of predictions as well as the evolution of probability distributions of event delays over time. The presented method is important for making better predictions for train traffic, that are not only based on static, offline collected data, but are able to positively include the dynamic characteristics of the continuously changing delays.  相似文献   

9.
    
One of the major drawbacks of conventional air quality models is their inability in accurately predicting extreme air pollutant concentrations. Hybrid modelling is one of the techniques that estimates/predicts the ‘entire range’ of the distribution of pollutant concentrations by combining the deterministic based models (capable in predicting average range) with suitable statistical (probability) distribution models (capable in predicting extreme range). This research paper describes system based approach in developing hybrid model to predict hourly averages as well as extreme percentile ranges of NOx and PM2.5 concentrations at two urban locations having complex traffic heterogeneity, highly variable tropical meteorology and different geographical characteristics. At one of the selected locations i.e. Delhi megacity, during winters, hybridization of AERMOD and Lognormal predicts NOx and PM2.5 concentrations satisfactorily with index of agreement ‘d’ values of 0.98–0.99, respectively; however, during summers, AERMOD-Log-logistic and AERMOD-Lognormal are best predicting NOx and PM2.5 concentrations with d values of 0.98–0.96, respectively. In another, i.e., Chennai, a coastal megacity, AERMOD-Lognormal predicts PM2.5 concentrations satisfactorily with d values of 0.98 and 0.99 during winter and summer seasons, respectively. Further, hybrid model has also been used to evaluate regulatory compliance.  相似文献   

10.
    
Channelized section spillover (CSS) is usually referred to the phenomenon of a traffic flow being blocked upstream and not being able to enter the downstream channelized section. CSS leads to extra delays, longer queues, and a biased detection of the flow rate. An estimation of CSS, including its occurrence and duration, is helpful for analysis of the state of traffic flow, as a basis for traffic evaluation and management. This has not been studied or reported in prior literature. A Bayesian model is developed through this research to estimate CSS, with its occurrence and duration formulated as a posterior distribution of given travel time and flow rate data. Basic properties of CSS are discussed initially, followed by a macroscopic model that explicitly models the CSS and encapsulates first-in-first-out (FIFO) behavior at an upstream section, with a goal of generating the prior distribution of CSS duration. Posterior distribution is then constructed using the detected flow rate and travel time vehicles samples. The Markov Chain Monte Carlo (MCMC) sampling method is used to solve this Bayesian model. The proposed model is implemented and tested in a channelized intersection and its modeling results are compared with Vissim simulation outputs, which demonstrated satisfactory results.  相似文献   

11.
The lack of personalized solutions for managing the demand of joint leisure trips in cities in real time hinders the optimization of transportation system operations. Joint leisure activities can account for up to 60% of trips in cities and unlike fixed trips (i.e., trips to work where the arrival time and the trip destination are predefined), leisure activities offer more optimization flexibility since the activity destination and the arrival times of individuals can vary.To address this problem, a perceived utility model derived from non-traditional data such as smartphones/social media for representing users’ willingness to travel a certain distance for participating in leisure activities at different times of day is presented. Then, a stochastic annealing search method for addressing the exponential complexity optimization problem is introduced. The stochastic annealing method suggests the preferred location of a joint leisure activity and the arrival times of individuals based on the users’ preferences derived from the perceived utility model. Test-case implementations of the approach used 14-month social media data from London and showcased an increase of up to 3 times at individuals’ satisfaction while the computational complexity is reduced to almost linear time serving the real-time implementation requirements.  相似文献   

12.
    
The aim of this paper is to develop a path-size weibit (PSW) route choice model with an equivalent mathematical programming (MP) formulation under the stochastic user equilibrium (SUE) principle that can account for both route overlapping and route-specific perception variance problems. Specifically, the Weibull distributed random error term handles the identically distributed assumption such that the perception variance with respect to different trip lengths can be distinguished, and a path-size factor term is introduced to resolve the route overlapping issue by adjusting the choice probabilities for routes with strong couplings with other routes. A multiplicative Beckmann’s transformation (MBec) combined with an entropy term are used to develop the MP formulation for the PSW-SUE model. A path-based algorithm based on the partial linearization method is adopted for solving the PSW-SUE model. Numerical examples are also provided to illustrate features of the PSW-SUE model and its differences compared to some existing SUE models as well as its applicability on a real-size network.  相似文献   

13.
    
In this paper we present a solution methodology based on the stochastic branch and bound algorithm to find optimal, or close to optimal, solutions to the stochastic airport runway scheduling problem. The objective of the scheduling problem is to find a sequence of aircraft operations on one or several runways that minimizes the total makespan, given uncertain aircraft availability at the runway. Enhancements to the general stochastic branch and bound algorithm are proposed and we give the specific details pertaining to runway scheduling. We show how the algorithm can be terminated early with solutions that are close to optimal, and investigate the impact of the uncertainty level. The computational experiment indicates that the sequences obtained using the stochastic branch and bound algorithm have, on average, 5–7% shorter makespans than sequences obtained using deterministic sequencing models. In addition, the proposed algorithm is able to solve instances with 14 aircraft using less than 1 min of computation time.  相似文献   

14.
    
Traffic Related Air Pollution (TRAP) studies are usually investigated using different categories such as air pollution exposure for health impacts, urban transportation network design to mitigate pollution, environmental impacts of pollution, etc. All of these subfields often rely on a robust air pollution model, which also necessitates an accurate prediction of future pollutants. As is widely accepted by the heath authorities, TRAP is considered to be the major health issue in urban areas, and it is difficult to keep pollution at harmless levels if the time sequenced dynamic pollution and traffic parameters are not identified and modelled efficiently. In our work here, artificial intelligence techniques, such as Bayesian Networks with an optimized configuration, are used to deliver a probabilistic traffic data analysis and predictive modelling for air pollution (SO2, NO2 and CO) at very local scale of an urban region with up to 85% accuracy. The main challenge for traditional data analysis is a lack of capability to reveal the hidden links between distant data attributes (e.g. pollution sources, dynamic traffic parameters, etc.), whereas some subtle effects of these parameters or events may play an important role in pollution on a long-term basis. This study focuses on the optimisation of Bayesian Networks to unveil hidden links and to increase the prediction accuracy of TRAP considering its further association with a predictive GIS system.  相似文献   

15.
文章根据灾害链式理论,分析了拱桥侧墙病害的链式机理及规律,提出了基于断链减灾思想的加固治理方法。通过工程实践证明,基于链式理论的病害分析与加固治理方法是可行的。  相似文献   

16.
    
This paper studies a mean-standard deviation shortest path model, also called travel time budget (TTB) model. A route’s TTB is defined as this route’s mean travel time plus a travel time margin, which is the route travel time’s standard deviation multiplied with a factor. The TTB model violates the Bellman’s Principle of Optimality (BPO), making it difficult to solve it in any large stochastic and time-dependent network. Moreover, it is found that if path travel time distributions are skewed, the conventional TTB model cannot reflect travelers’ heterogeneous risk-taking behavior in route choice. This paper proposes to use the upper or lower semi-standard deviation to replace the standard deviation in the conventional TTB model (the new models are called derived TTB models), because these derived TTB models can well capture such heterogeneous risk-taking behavior when the path travel time distributions are skewed. More importantly, this paper shows that the optimal solutions of these two derived TTB models must be non-dominated paths under some specific stochastic dominance (SD) rules. These finding opens the door to solve these derived TTB models efficiently in large stochastic and time-dependent networks. Numerical examples are presented to illustrate these findings.  相似文献   

17.
The Traffic Alert and Collision Avoidance System (TCAS) is a world-wide accepted last-resort means of reducing the probability and frequency of mid-air collisions between aircraft. Unfortunately, it is widely known that in congested airspace, the use of the TCAS may actually lead to induced collisions. Therefore, further research regarding TCAS logic is required. In this paper, an encounter model is formalised to identify all of the potential collision scenarios that can be induced by a resolution advisory that was generated previously by the TCAS without considering the downstream consequences in the surrounding traffic. The existing encounter models focus on checking and validating the potential collisions between trajectories of a specific scenario. In contrast, the innovative approach described in this paper concentrates on quantitative analysis of the different induced collision scenarios that could be reached for a given initial trajectory and a rough specification of the surrounding traffic. This approach provides valuable information at the operational level. Furthermore, the proposed encounter model can be used as a test-bed to evaluate future TCAS logic changes to mitigate potential induced collisions in hot spot volumes. In addition, the encounter model is described by means of the coloured Petri net (CPN) formalism. The resulting state space provides a deep understanding of the cause-and-effect relationship that each TCAS action proposed to avoid an actual collision with a potential new collision in the surrounding traffic. Quantitative simulation results are conducted to validate the proposed encounter model, and the resulting collision scenarios are summarised as valuable information for future Air Traffic Management (ATM) systems.  相似文献   

18.
This paper applies the theory of Hamilton–Jacobi partial differential equations to the case of first-order traffic flow models. The traffic flow surface is analyzed with respect to the three 2-dimensional coordinate systems arising in the space of vehicle number, time and distance. In each case, the solution to the initial and boundary value problems are presented. Explicit solution methods and examples are shown for the triangular flow-density diagram case. This unveils new models and shows how a number of existing models are cast as special cases.  相似文献   

19.
We propose a stochastic frontier approach to estimate budgets for the multiple discrete–continuous extreme value (MDCEV) model. The approach is useful when the underlying time and/or money budgets driving a choice situation are unobserved, but the expenditures on the choice alternatives of interest are observed. Several MDCEV applications hitherto used the observed total expenditure on the choice alternatives as the budget to model expenditure allocation among choice alternatives. This does not allow for increases or decreases in the total expenditure due to changes in choice alternative-specific attributes, but only allows a reallocation of the observed total expenditure among different alternatives. The stochastic frontier approach helps address this issue by invoking the notion that consumers operate under latent budgets that can be conceived (and modeled) as the maximum possible expenditure they are willing to incur. The proposed method is applied to analyze the daily out-of-home activity participation and time-use patterns in a survey sample of non-working adults in Florida. First, a stochastic frontier regression is performed on the observed out-of-home activity time expenditure (OH-ATE) to estimate the unobserved out-of-home activity time frontier (OH-ATF). The estimated frontier is interpreted as a subjective limit or maximum possible time individuals can allocate to out-of-home activities and used as the time budget governing out-of-home time-use choices in an MDCEV model. The efficacy of this approach is compared with other approaches for estimating time budgets for the MDCEV model, including: (a) a log-linear regression on the total observed expenditure for out-of-home activities and (b) arbitrarily assumed, constant time budgets for all individuals in the sample. A comparison of predictive accuracy in time-use patterns suggests that the stochastic frontier and log-linear regression approaches perform better than arbitrary assumptions on time budgets. Between the stochastic frontier and log-linear regression approaches, the former results in slightly better predictions of activity participation rates while the latter results in slightly better predictions of activity durations. A comparison of policy simulations demonstrates that the stochastic frontier approach allows for the total out-of-home activity time expenditure to either expand or shrink due to changes in alternative-specific attributes. The log-linear regression approach allows for changes in total time expenditure due to changes in decision-maker attributes, but not due to changes in alternative-specific attributes.  相似文献   

20.
    
Vehicular emission models play a key role in the development of reliable air quality modeling systems. To minimize uncertainties associated with these models, it is essential to match the high-resolution requirements of emission models with up-to-date information. However, these models are usually based on average trip speed, not on environmental parameters like ambient temperature, and vehicle’s motion characteristics, such as speed, acceleration, load and power. This contributes to the degradation of its predictive performance. In this paper, we propose to use the non-parametric Classification and Regression Trees (CART), the Boosting Multivariate Adaptive Regression Splines (BMARS) algorithm and a combination of them in hybrid models to improve the accuracy of vehicular emission prediction using on-board measurements and the chassis dynamometer testing. The experimental comparison between the proposed CART-BMARS hybrid model with the BMARS and artificial neural networks (ANNs) algorithms demonstrates its effectiveness and efficiency in estimating vehicular emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号