首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are many systems to evaluate driving style based on smartphone sensors without enough awareness from the context. To cover this gap, we propose a new system namely CADSE system to consider the effects of traffic levels and car types on driving evaluation. CADSE system includes three subsystems to calibrate smartphone, to classify the maneuvers, and to evaluate driving styles. For each maneuver, the smartphone sensors data are gathered in three successive time intervals referred as pre-maneuver, in-maneuver, and post-maneuver times. Then, we extract some important mathematical and experimental features from these data. Afterwards, we propose an ensemble learning method on these features to classify the maneuvers. This ensemble method includes decision tree, support vector machine, multi-layer perceptron, and k-nearest neighbors. Finally, we develop a rule-based fuzzy inference system to integrate the outputs of these algorithms and to recognize dangerous and safe maneuvers. CADSE saves this result in driver’s profile to consider more for dangerous driving recognition. The experimental results show that accuracy, precision, recall, and F-measure of CADSE system are greater than 94%, 92%, 92%, and 93%, respectively that prove the system efficiency.  相似文献   

2.
This paper explores the use of smartphone applications for trip planning and travel outcomes using data derived from a survey conducted in Halifax, Nova Scotia, in 2015. The study provides empirical evidence of relationships of smartphone use for trip planning (e.g. departure time, destination, mode choice, coordinating trips and performing tasks online) and resulting travel outcomes (e.g. vehicle kilometers traveled, social gathering, new place visits, and group trips) and associated factors. Several sets of factors such as socio-economic characteristics and travel characteristics are tested and interpreted. Results suggest that smartphone applications mostly influence younger individuals’ trip planning decisions. Transit pass owners are the frequent users of smartphone applications for trip planning. Findings suggest that transit pass owners commonly use smartphone applications for deciding departure times and mode choices. The study also identifies the limited impact of smartphone application use on reducing travel outcomes, such as vehicle kilometers traveled. The highest impact is in visiting new places (a 48.8% increase). The study essentially offers an original in-depth understanding of how smartphone applications are affecting everyday travel.  相似文献   

3.
The fuzzy rule based inference is known to be a useful tool to capture the behavior of an approximate system in transportation. One of the obstacles of implementing the fuzzy rule based inference, however, has been to calibrate the membership functions of the fuzzy sets used in the rules. This paper proposes a way to calibrate the membership function when a set of input and output data is given for the system. First, the mathematical operations of the fuzzy rule based inference system are represented by a neural network construction. The operations of each node of this neural network are designed so that they correspond to specific logical operations of the fuzzy rule based inference system. The values of the weights of this neural network are set to correspond to the parameters that control the shape and location of each membership function. Second, given a set of input–output data, the weights are corrected sequentially using the principle of the generalized delta rule based back-propagation mechanism. After correction, the values of the weights are used to specify the exact shape of the membership functions of the fuzzy sets in the rules. The procedure implements a set of logical rules that can be applied when calibrating the shapes of the membership functions of a fuzzy inference system. An example, in which the membership functions of a fuzzy inference model for car-following behavior are calibrated using the real world data, is shown.  相似文献   

4.
Following advancements in smartphone and portable global positioning system (GPS) data collection, wearable GPS data have realized extensive use in transportation surveys and studies. The task of detecting driving cycles (driving or car-mode trajectory segments) from wearable GPS data has been the subject of much research. Specifically, distinguishing driving cycles from other motorized trips (such as taking a bus) is the main research problem in this paper. Many mode detection methods only focus on raw GPS speed data while some studies apply additional information, such as geographic information system (GIS) data, to obtain better detection performance. Procuring and maintaining dedicated road GIS data are costly and not trivial, whereas the technical maturity and broad use of map service application program interface (API) queries offers opportunities for mode detection tasks. The proposed driving cycle detection method takes advantage of map service APIs to obtain high-quality car-mode API route information and uses a trajectory segmentation algorithm to find the best-matched API route. The car-mode API route data combined with the actual route information, including the actual mode information, are used to train a logistic regression machine learning model, which estimates car modes and non-car modes with probability rates. The experimental results show promise for the proposed method’s ability to detect vehicle mode accurately.  相似文献   

5.
A leading cause of air pollution in many urban regions is mobile source emissions that are largely attributable to household vehicle travel. While household travel patterns have been previously related with land use in the literature (Crane, R., 1996. Journal of the American Planning Association 62 (1, Winter); Cervero, R. and Kockelman, C., 1997. Transportation Research Part D 2 (3), 199–219), little work has been conducted that effectively extends this relationship to vehicle emissions. This paper describes a methodology for quantifying relationships between land use, travel choices, and vehicle emissions within the Seattle, Washington region. Our analysis incorporates land use measures of density and mix which affect the proximity of trip origins to destinations; a measure of connectivity which impacts the directness and completeness of pedestrian and motorized linkages; vehicle trip generation by operating mode; vehicle miles/h of travel and speed; and estimated household vehicle emissions of nitrogen oxides, volatile organic compounds, and carbon monoxide. The data used for this project consists of the Puget Sound Transportation Panel Travel Survey, the 1990 US Census, employment density data from the Washington State Employment Security Office, and information on Seattle’s vehicle fleet mix and climatological attributes provided by the Washington State Department of Ecology. Analyses are based on a cross-sectional research design in which comparisons are made of variations in household travel demand and emissions across alternative urban form typologies. Base emission rates from MOBILE5a and separate engine start rates are used to calculate total vehicle emissions in grams accounting for fleet characteristics and other inputs reflecting adopted transportation control measures. Emissions per trip are based on the network distance of each trip, average travel speed, and a multi-stage engine operating mode (cold start, hot start, and stabilized) function.  相似文献   

6.
Variable speed limit (VSL) is an emerging intelligent transportation system (ITS) measure to improve operational and safety performance of motorway systems. Rule‐based algorithms have been widely used in VSL applications because of their comprehensibility and ease of application. However, most of the algorithms proposed in the literature under this category are rather rough for the speed control. Pre‐specified rules show some difficulties in appropriately activating/deactivating control actions in real time because of non‐stationary and nonlinear nature of the traffic system. This paper proposes a fuzzy logic‐based VSL control algorithm as an alternative to the existing VSL control algorithms. The proposed algorithm uses fuzzy sets instead of crisp sets to allow the separation of attribute domains into several overlapping intervals. The discretization using fuzzy sets can help to overcome the sensitivity problem caused by crisp discretization used in the existing VSL algorithms. The proposed algorithm is assessed for a test bed in Auckland using AIMSUN micro‐simulator and verified against a well‐known VSL algorithm. The simulation results show that the proposed algorithm outperforms the existing one to improve the efficiency performance of the motorway system with the critical bottleneck capacity increased by 6.42% and total travel time reduced by 12.39% when compared to a no‐control scenario. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Procedures to transform GPS tracks into activity-travel diaries have been increasingly addressed due to their potential benefit to replace traditional methods used in travel surveys. Existing approaches for data annotation however are not sufficiently accurate, which normally involves a prompted recall survey for data validation. Imputation algorithms for transportation mode detection seem to be largely dependent on speed-related features, which may blur the quality of classification results, especially with transportation modes having similar speeds. Therefore, in this paper we propose an enhanced integrated imputation approach by incorporating the critical indicators related to trip patterns, reflecting the effects of uncertain travel environments, including bus stops and speed percentiles. A two-step procedure which embeds a segmentation model and a transportation mode inference model is designed and examined based on purified prompted recall data collected in a large-scale travel survey. Results show the superior performance of the proposed approach, where the overall accuracy at trip level reaches 93.2% and 88.1% for training and surveyed data, respectively.  相似文献   

8.
The present work investigates the use of smartphones as an alternative to gather data for driving behavior analysis. The proposed approach incorporates i. a device reorientation algorithm, which leverages gyroscope, accelerometer and GPS information, to correct the raw accelerometer data, and ii. a machine-learning framework based on rough set theory to identify rules and detect critical patterns solely based on the corrected accelerometer data. To evaluate the proposed framework, a series of driving experiments are conducted in both controlled and “free-driving” conditions. In all experiments, the smartphone can be freely positioned inside the subject vehicle. Findings indicate that the smartphone-based algorithms may accurately detect four distinct patterns (braking, acceleration, left cornering and right cornering) with an average accuracy comparable to other popular detection approaches based on data collected using a fixed position device.  相似文献   

9.
The use of smartphone technology is increasingly considered a state-of-the-art practice in travel data collection. Researchers have investigated various methods to automatically predict trip characteristics based upon locational and other smartphone sensing data. Of the trip characteristics being studied, trip purpose prediction has received relatively less attention. This research develops trip purpose prediction models based upon online location-based search and discovery services (specifically, Google Places API) and a limited set of trip data that are usually available upon the completion of the trip. The models have the potential to be integrated with smartphone technology to produce real-time trip purpose prediction. We use a recent, large-scale travel behavior survey that is augmented by downloaded Google Places information on each trip destination to develop and validate the models. Two statistical and machine learning prediction approaches are used, including nested logit and random forest methods. Both sets of models show that Google Places information is a useful predictor of trip purpose in situations where activity- and person-related information is uncollectable, missing, or unreliable. Even when activity- and person-related information is available, incorporating Google Places information provides incremental improvements in trip purpose prediction.  相似文献   

10.
On many urban low‐grade or branch roads, especially in medium or small cities in China, bicyclists and motorists commonly share the non‐barrier road surface. Because bicycles are unpredictable and unstable when moving, motorized vehicles must reduce their speed to safely approach and overtake them. In this study, the gradual deceleration process a motorized vehicle undergoes before it passes a bicycle was analyzed. The motorist was assumed to prefer a comfortable deceleration and to select a higher deceleration rate only when the distance to the bicycle was insufficient to reduce the car's speed to the expected value at a comfortable deceleration rate. Cellular automata (CA) simulations were used to reveal the flow characteristics of motorized vehicles reacting to bicycles traveling along the roadside, and the results show that for the general velocities of motorized vehicles and bicycles traveling on urban branch roads, the road capacity for motorized vehicles is not related to the number of bicycles present. However, the average travel time of motorized vehicles is significantly affected by the presence of bicycles when the number of motorized vehicles on the road is small. In addition, motorized vehicles' average travel time is more influenced by disturbances in the flow of motorized vehicles than by bicycles when the number of motorized vehicles on the road is large. Field observations and surveys were used to validate the traffic behaviors and simulation results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In many cities of the world, road space is increasingly contested. Growing vehicle numbers, traffic calming and the development of new infrastructure for more sustainable transport modes such as bicycles have all contributed to pressure on available space and conflicts over the allocation of space. This paper provides the first assessment of urban transport infrastructure space distribution, distinguishing motorized individual transport, public transport, cycling and walking. To calculate area allocation, an assessment methodology was developed using high-resolution digital satellite images in combination with a geographical information system to derive area measurements. This methodology was applied to four distinctly different city quarters in Freiburg, Germany. Results indicate that space is unevenly distributed, with motorized individual transport being the favoured transport mode. Findings also show that if trip number to space allocation ratios are calculated, one of the most sustainable transport modes, the bicycle, is the most disadvantaged. This suggests that area allocation deserves greater attention in the planning and implementation of more sustainable urban transport designs.  相似文献   

12.
Recently there has been much interest in understanding macroscopic fundamental diagrams of stationary road networks. However, there lacks a systematic method to define and solve stationary states in a road network with complex junctions. In this study we propose a kinematic wave approach to defining, analyzing, and simulating static and dynamic traffic characteristics in a network of two ring roads connected by a 2 × 2 junction, which can be either an uninterrupted interchange or a signalized intersection. This study is enabled by recently developed macroscopic junction models of general junctions. With a junction model based on fair merging and first-in-first-out diverging rules, we first define and solve stationary states and then derive the macroscopic fundamental diagram (MFD) of a stationary uninterrupted network. We conclude that the flow-density relationship of the uninterrupted double-ring network is not unique for high average network densities (i.e., when one ring becomes congested) and unveil the existence of infinitely many stationary states that can arise with a zero-speed shockwave. From simulation results with a corresponding Cell Transmission Model, we verify that all stationary states in the MFD are stable and can be reached, but show that randomness in the retaining ratio of each ring drives the network to more symmetric traffic patterns and higher flow-rates. Furthermore we model a signalized intersection as two alternate diverge junctions and demonstrate that the signalized double-ring network can reach asymptotically periodic traffic patterns, which are therefore defined as “stationary” states in signalized networks. With simulations we show that the flow-density relation is well defined in such “stationary” states, and asymptotic traffic patterns can be impacted by signal cycle lengths and retaining ratios. But compared with uninterrupted interchanges, signalized intersections lead to more asymmetric traffic patterns, lower flow-rates, and even gridlocks when the average density is higher than half of the jam density. The results are consistent between this study and existing studies, but the network kinematic wave model, with appropriate junction models, is mathematically tractable and physically meaningful. It has offered a more complete picture regarding the number and type of stationary states, their stability, and MFD in freeway and signalized networks.  相似文献   

13.
This article describes a novel approach for the binary classification of two‐wheeler road users in a dense mixed traffic intersection. The classification is a supervised procedure to differentiate between motorized and non‐motorized (human‐powered) bikes. Road users were first detected and tracked using object recognition methods. Classification features were then selected from the collected trajectories. The features include maximum speed, cadence frequency in addition to acceleration‐based parameters. Experiments were conducted on a video data set from Shanghai, China, where cyclists as well as motorcycles tend to share the main road facilities. A sensitivity analysis was performed to assess the quality of the selected features in improving the accuracy of the classification. A performance analysis demonstrated the robustness of the proposed classification method with a correct classification rate of up to 93%. This research contributes to the literature of automated data collection and can benefit the applications in many transportation‐related fields such as shared space facility planning, simulation models for two‐wheelers, and behavior analysis and road safety studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
State of the art travel demand models for urban areas typically distinguish four or five main modes: walking, cycling, public transport and car. The mode car can be further split into car-driver and car-passenger. As the importance of ridesharing may increase in the coming years, ridesharing should be addressed as an additional sub or main mode in travel demand modeling. This requires an algorithm for matching the trips of suppliers (typically car drivers) and demanders (travelers of non-car modes). The paper presents a matching algorithm, which can be integrated in existing travel demand models. The algorithm works likewise with integer demand, which is typical for agent-based microscopic models, and with non-integer demand occurring in travel demand matrices of a macroscopic model. The algorithm compares two path sets of suppliers and demanders. The representation of a path in the road network is reduced from a sequence of links to a sequence of zones. The zones act as a buffer along the path, where demanders can be picked up. The travel demand model of the Stuttgart Region serves as an application example. The study estimates that the entire travel demand of all motorized modes in the Stuttgart Region could be transported by 7% of the current car fleet with 65% of the current vehicle distance traveled, if all travelers were willing to either use ridesharing vehicles with 6 seats or traditional rail.  相似文献   

15.
Pedestrians and cyclists are amongst the most vulnerable road users. Pedestrian and cyclist collisions involving motor-vehicles result in high injury and fatality rates for these two modes. Data for pedestrian and cyclist activity at intersections such as volumes, speeds, and space–time trajectories are essential in the field of transportation in general, and road safety in particular. However, automated data collection for these two road user types remains a challenge. Due to the constant change of orientation and appearance of pedestrians and cyclists, detecting and tracking them using video sensors is a difficult task. This is perhaps one of the main reasons why automated data collection methods are more advanced for motorized traffic. This paper presents a method based on Histogram of Oriented Gradients to extract features of an image box containing the tracked object and Support Vector Machine to classify moving objects in crowded traffic scenes. Moving objects are classified into three categories: pedestrians, cyclists, and motor vehicles. The proposed methodology is composed of three steps: (i) detecting and tracking each moving object in video data, (ii) classifying each object according to its appearance in each frame, and (iii) computing the probability of belonging to each class based on both object appearance and speed. For the last step, Bayes’ rule is used to fuse appearance and speed in order to predict the object class. Using video datasets collected in different intersections, the methodology was built and tested. The developed methodology achieved an overall classification accuracy of greater than 88%. However, the classification accuracy varies across modes and is highest for vehicles and lower for pedestrians and cyclists. The applicability of the proposed methodology is illustrated using a simple case study to analyze cyclist–vehicle conflicts at intersections with and without bicycle facilities.  相似文献   

16.
Recent improvements of communication technologies leads to several innovations in road vehicles energy consumption. As an example, several ecodriving applications already appeared on all smartphone application markets. Using embedded smartphone signals, such applications provide real time feedback to drivers according to their performances. However most of these applications does not take into account upcoming events such as curves, slopes or crossings to advise the driver on the best actions to undertake to lower energy consumption. Furthermore, they do not analyze data coming from vehicle sensors. In this paper, we present an android application, developed within the FP7 European project ecoDriver, which provides several innovative properties: advice according to upcoming events, a real time evaluation of the driving behavior, the analysis of past actions, an interface with OBD2 connector and some more. This paper further develops the complete architecture and links between each innovative function. Future works will concentrate on integrating image processing in this application in order to detect the possible presence of a front vehicle.  相似文献   

17.
Urban populations transport risk perception is interesting because it is associated with travel mode choices and use. This study investigates changes in transport-related risk constructs in the urban population in Norway in 2004 and 2013, and describes whether people perceive private or public to be associated with the highest risk. The results are based on self-completion questionnaire surveys conducted in two independent representative samples living in the same urban areas in 2004 (n?=?592) and 2013 (n?=?1035). Overall, the respondents perceived the risk as lower in 2013 than in 2004. For both time periods, people consistently assessed the risk constructs related to private motorized transportation as higher than corresponding risk in public transportation. The findings suggest that while transportation risk perception in urban populations may change over time, the pattern that private motorized transportation is associated with a higher perceived risk than public transportation remains stable.  相似文献   

18.
Short-term forecasting of high-speed rail (HSR) passenger flow provides daily ridership estimates that account for day-to-day demand variations in the near future (e.g., next week, next month). It is one of the most critical tasks in high-speed passenger rail planning, operational decision-making and dynamic operation adjustment. An accurate short-term HSR demand prediction provides a basis for effective rail revenue management. In this paper, a hybrid short-term demand forecasting approach is developed by combining the ensemble empirical mode decomposition (EEMD) and grey support vector machine (GSVM) models. There are three steps in this hybrid forecasting approach: (i) decompose short-term passenger flow data with noises into a number of intrinsic mode functions (IMFs) and a trend term; (ii) predict each IMF using GSVM calibrated by the particle swarm optimization (PSO); (iii) reconstruct the refined IMF components to produce the final predicted daily HSR passenger flow, where the PSO is also applied to achieve the optimal refactoring combination. This innovative hybrid approach is demonstrated with three typical origin–destination pairs along the Wuhan-Guangzhou HSR in China. Mean absolute percentage errors of the EEMD-GSVM predictions using testing sets are 6.7%, 5.1% and 6.5%, respectively, which are much lower than those of two existing forecasting approaches (support vector machine and autoregressive integrated moving average). Application results indicate that the proposed hybrid forecasting approach performs well in terms of prediction accuracy and is especially suitable for short-term HSR passenger flow forecasting.  相似文献   

19.
基于李群理论的汽油发动机尾气分析模型匹配算法研究   总被引:1,自引:0,他引:1  
为了准确对发动机尾气排放状态和规律进行分析,本文提出了一种基于李群理论的汽油发动机尾气分析模型。该模型针对尾气排放量的非线性变化特征,利用李代数和李群之间的指数映射关系建立李群仿射模型,然后在流行拓扑空间上对尾气中主要污染物的含量进行建模。通过模型匹配算法实现对尾气排放状态的正常与否进行分析。该方法利用数据的流行拓扑信息,有效提高了非线性建模和匹配的准确性和效率。在福特蒙迪欧牌轿车上的实验结果表明,该模型能够以较高精度对汽油机尾气排放状况进行建模和状态匹配。  相似文献   

20.
This study presents a cost–benefit analysis of a law requiring cyclists to wear a helmet when riding a bicycle in Germany. The cost benefit-analysis takes into account the benefit of increased security when cyclists wear a helmet or use a transport mode that is less risky than cycling. The analysis also considers the cost of purchasing helmets, reduced fitness when cycling is replaced by a motorized transport mode, the discomfort of wearing helmets and environmental externalities. The benefits of a helmet law are estimated at about 0.7 of the costs. A bicycle helmet law for Germany is found to be a waste of resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号