首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is substantial evidence to indicate that route choice in urban areas is complex cognitive process, conducted under uncertainty and formed on partial perspectives. Yet, conventional route choice models continue make simplistic assumptions around the nature of human cognitive ability, memory and preference. In this paper, a novel framework for route choice in urban areas is introduced, aiming to more accurately reflect the uncertain, bounded nature of route choice decision making. Two main advances are introduced. The first involves the definition of a hierarchical model of space representing the relationship between urban features and human cognition, combining findings from both the extensive previous literature on spatial cognition and a large route choice dataset. The second advance involves the development of heuristic rules for route choice decisions, building upon the hierarchical model of urban space. The heuristics describe the process by which quick, ‘good enough’ decisions are made when individuals are faced with uncertainty. This element of the model is once more constructed and parameterised according to findings from prior research and the trends identified within a large routing dataset. The paper outlines the implementation of the framework within a real-world context, validating the results against observed behaviours. Conclusions are offered as to the extension and improvement of this approach, outlining its potential as an alternative to other route choice modelling frameworks.  相似文献   

2.
The effect of social interactions on decision-making is a topic of current interest in the travel behavior literature. These interactions have been investigated primarily from an intra-household perspective, but increasingly too in other types of social settings. In the case of interactions within a workplace, it has been suggested that the decision to telecommute may have some important social components. Previous research has concentrated on social isolation, and the effect on job satisfaction of qualitatively different (i.e., telecommunications-mediated) relationships with managers and colleagues. A topic that remains unexplored is the way social norms, in effect the influence of other people’s behavior, may influence the decision to adopt telecommuting. In this paper we set to investigate, within a qualitative framework, the role of social contact in the process of acquiring information on, and making decisions about, telecommuting. The results indicate that social contact does play a subtle but non-trivial role in the adoption and continuation process, and offer some insights about the importance of the social dimension, institutional set-up, and how they interact to influence the decision to telecommute.  相似文献   

3.
The recently emerging trend of self-driving vehicles and information sharing technologies, made available by private technology vendors, starts creating a revolutionary paradigm shift in the coming years for traveler mobility applications. By considering a deterministic traveler decision making framework at the household level in congested transportation networks, this paper aims to address the challenges of how to optimally schedule individuals’ daily travel patterns under the complex activity constraints and interactions. We reformulate two special cases of household activity pattern problem (HAPP) through a high-dimensional network construct, and offer a systematic comparison with the classical mathematical programming models proposed by Recker (1995). Furthermore, we consider the tight road capacity constraint as another special case of HAPP to model complex interactions between multiple household activity scheduling decisions, and this attempt offers another household-based framework for linking activity-based model (ABM) and dynamic traffic assignment (DTA) tools. Through embedding temporal and spatial relations among household members, vehicles and mandatory/optional activities in an integrated space-time-state network, we develop two 0–1 integer linear programming models that can seamlessly incorporate constraints for a number of key decisions related to vehicle selection, activity performing and ridesharing patterns under congested networks. The well-structured network models can be directly solved by standard optimization solvers, and further converted to a set of time-dependent state-dependent least cost path-finding problems through Lagrangian relaxation, which permit the use of computationally efficient algorithms on large-scale high-fidelity transportation networks.  相似文献   

4.
This paper focuses on modeling agents’ en-route diversion behavior under information provision. The behavior model is estimated based on naïve Bayes rules and re-calibrated using a Bayesian approach. Stated-preference driving simulator data is employed for model estimation. Bluetooth-based field data is employed for re-calibration. Then the behavior model is integrated with a simulation-based dynamic traffic assignment model. A traffic incident scenario along with variable message signs (VMS) is designed and analyzed under the context of a real-world large-scale transportation network to demonstrate the integrated model and the impact of drivers’ dynamic en-route diversion behavior on network performance. Macroscopic Fundamental Diagram (MFD) is employed as a measurement to represent traffic dynamics. This research has quantitatively evaluated the impact of information provision and en-route diversion in a VMS case study. It proposes and demonstrates an original, complete, behaviorally sound, and cost-effective modeling framework for potential analyses and evaluations related to Advanced Traffic Information System (ATIS) and real-time operational applications.  相似文献   

5.
Congestion charging was – as a trial – introduced in Stockholm from January 3rd to July 31st 2006. After the referendum in September 2006, the charging system was finally introduced as permanent from August 2007 with some adjustments to the Trial design. The idea of congestion charging is unique in a Swedish context, and the introduction of the Stockholm system has been highly controversial. Considerable efforts have therefore been undertaken to provide information that could serve as ‘Decision Support’ along the way. This has included e.g. modelling and forecasts before the Trial, a comprehensive evaluation programme during the Trial, extensive stakeholder consultations throughout, and various information and communication strategies. But what difference did this information input make, and what was its role in the process from initiating the system, to its final adoption? In this paper we pave the way for investigating the use and role of ‘Decision Support’ in the Stockholm Congestion Charging experiment. We adopt a definition of Decision Support as the systematic application of externally produced knowledge in transport planning and policy making processes. We then derive an analytical framework from the research literature on ‘knowledge utilization’ in policy making. This research has generally found that both ‘technical’, ‘communicative’, and ‘institutional’ aspects of the Decision Support matter for its influence on actual policy making processes and results. In our analysis we find a similar pattern. This high technical quality of the monitoring and evaluation programmes provided for solid verified results, while the institutional arrangements and the communication strategies helped to ensure the credibility and legitimacy of the information for the decision makers. The availability of rich contents coupled with strategies for the timely and targeted information delivery suggest that direct ‘instrumental’ use could have taken place. At a more general level the Trial represents an advanced form of ‘Decision Support’ that goes beyond the mere application of calculated results to encompass a process where the decision parameters themselves become part of the change process.  相似文献   

6.
The present study is designed to investigate social influence in car-sharing decisions under uncertainty. Social influence indicates that individuals’ decisions are influenced by the choices made by members of their social networks. An individual may experience different degrees of influence depending on social distance, i.e. the strength of the social relationship between individuals. Such heterogeneity in social influence has been largely ignored in the previous travel behavior research. The data used in this study stems from an egocentric social network survey, which measures the strength of the social relationships of each respondent. In addition, a sequential stated adaptation experiment was developed to capture more explicitly the effect of social network choices on the individual decision-making process. Social distance is regarded as a random latent variable. The estimated social distance and social network choices are incorporated into a social influence variable, which is treated as an explanatory variable in the car-sharing decision model. To simultaneously estimate latent social distance and the effects of social influence on the car-sharing decision, we expand the hybrid choice framework to incorporate the latent social distance model into discrete choice analysis. The estimation results show substantial social influence in car-sharing decisions. The magnitude of social influence varies according to the type of relationship, similarity of socio-demographics and the number of social interactions.  相似文献   

7.
Abstract

This paper presents a dynamic structural equation model (SEM) that explicitly addresses complicated causal relationships among socio-demographics, activity participation, and travel behavior. The model assumes that activity participation and travel patterns in the current year are affected by those in previous years. Using the longitudinal dataset collected from Puget sound transportation panel ‘wave 3’ and ‘wave 4,’ these assumptions are tested with suggested SEMs. Within each wave, the model is structured to have a three-level causal relationship that describes interactions among endogenous variables under time-budget constraints. The resulting coefficients representing the activity durations indicate that people tend to allocate their time according to the importance and the obligation of the activity level. Results from the dynamic SEM confirm the fact that people's current activity and travel behavior do have effects on those in the future. The resulting model also shows that activity participation and travel behavior in ‘wave 3’ are closely related to those in ‘wave 4.’ These explicit explanations of relationships among variables could provide important perspectives in the activity-based approach which becomes recognized as a better analytical tool for the transportation planning and policy making process.  相似文献   

8.
Electric mobility is often presented as a way to tackle the environmental issues associated with individual mobility, provided that electric vehicles are adopted by drivers on a mass scale. In this paper, we propose an agent-based model (ABM) aiming at modelling the deployment of these vehicles. ABM is particularly indicated when modelling complex systems whose final results are the combination of the interactions between individuals and their environment and when the agents have partial information to take their decisions. We selected Luxembourg and its French neighbouring region, Lorraine, as the case study for our model, to test Luxembourg’s ambitious objective of deploying 40,000 electric vehicles by the year 2020. Model results show that the number of battery powered electric vehicles in Luxembourg (including vehicles from Lorraine’s commuters crossing the border every day) could be between 2000 and 21,000. A high number of commercial vehicles in Luxembourg, as well as an unlikely deployment in the neighbouring Belgium and Germany would therefore be required to meet the deployment objective. However, the deployment of plug-in hybrid vehicles could reach 60,000 cars by the end of 2020. To achieve this number, the deployment of charging points seems to be the more effective policy, along with actions aiming at increasing public awareness and acceptance of electric vehicles. The interest in using the ABM also lies in the identification of the main individuals’ characteristics affecting the deployment of electric vehicles (household size, commuting distances, etc.), which further support the setting of public policies.  相似文献   

9.
Carpooling is an emerging alternative transportation mode that is eco-friendly and sustainable as it enables commuters to save time, travel resource, reduce emission and traffic congestion. The procedure of carpooling consists of a number of steps namely; (i) create a motive to carpool, (ii) communicate this motive with other agents, (iii) negotiate a plan with the interested agents, (iv) execute the agreed plans, and (v) provide a feedback to all concerned agents. In this paper, we present a conceptual design of an agent-based model (ABM) for the carpooling a that serves as a proof of concept. Our model for the carpooling application is a computational model that is used for simulating the interactions of autonomous agents and to analyze the effects of change in factors related to the infrastructure, behavior and cost. In our carpooling application, we use agent profiles and social networks to initiate our agent communication model and then employ a route matching algorithm, and a utility function to trigger the negotiation process between agents. We developed a prototype of our agent-based carpooling application based on the work presented in this paper and carried out a validation study of our results with real data collected in Flanders, Belgium.  相似文献   

10.
Traffic evacuation is a critical task in disaster management. Planning its evacuation in advance requires taking many factors into consideration such as the destination shelter locations and numbers, the number of vehicles to clear, the traffic congestions as well as traffic road configurations. A traffic evacuation simulation tool can provide the emergency managers with the flexibility of exploring various scenarios for identifying more accurate model to plan their evacuation. This paper presents a traffic evacuation simulation system based on integrated multi-level driving-decision models which generate agents’ behavior in a unified framework. In this framework, each agent undergoes a Strategic, Cognitive, Tactical and Operational (SCTO) decision process, in order to make a driving decision. An agent’s actions are determined by a combination, on each process level, of various existing behavior models widely used in different driving simulation models. A wide spectrum of variability in each agent’s decision and driving behaviors, such as in pre-evacuation activities, in choice of route, and in the following or overtaking the car ahead, are represented in the SCTO decision process models to simulate various scenarios. We present the formal model for the agent and the multi-level decision models. A prototype simulation system that reflects the multi-level driving-decision process modeling is developed and implemented. Our SCTO framework is validated by comparing with MATSim tool, and the experimental results of evacuation simulation models are compared with the existing evacuation plan for densely populated Beijing, China in terms of various performance metrics. Our simulation system shows promising results to support emergency managers in designing and evaluating more realistic traffic evacuation plans with multi-level agent’s decision models that reflect different levels of individual variability of handling stress situations. The flexible combination of existing behavior and decision models can help generating the best evacuation plan to manage each crisis with unique characteristics, rather than resorting to a fixed evacuation plan.  相似文献   

11.
P. Cerwenka 《运输评论》2013,33(2):185-212
Abstract

Road construction of all kinds, especially of urban motorways, has in recent years acquired a very bad reputation in industrialized countries. Traffic engineers are, because of their attitude, not entirely without blame for this development. With their attention glued nearly hypnotically to dimensions and technical design, considerations about the meaning and function of the construction are very often neglected, all the more since the engineers might otherwise risk their own jobs. It is, however, becoming increasingly clear that the cause of the scepticism and uneasiness prevailing in the public is the lack of a comprehensive judgement. Using a concrete example, this paper describes how decision‐making can degenerate when such judgement is omitted. Using a second example, it is then demonstrated how such a comprehensive judgement can be integrated in decision‐making from the very beginning. Such an integration sets very high methodological and procedural standards and constructive aids are offered for this purpose. It is shown that, while the substantial findings of a comprehensive judgement should be logically consistent, plausible and up to the latest standard of knowledge, the nature and intelligibility of the presentation and the preparedness for a publicly presented explanation in the form of ‘after‐care’ are of much greater importance for decision‐making in the political sphere. This ‘after‐care’ should accordingly become an indispensable component of the decision‐making process.

All those involved should become aware of the fact that a ‘positive’ result of decision‐making in the field of road construction is not a priori defined as the construction of road and a ‘negative’ one as its prevention. The actual positive result is rather the creation of a consciousness of the problem on hand, which can serve as a basis on which a decision is taken in full realization of all its consequences.  相似文献   

12.
ABSTRACT

Port activity plays an important role in facilitating international trade. Sufficient capacity is indispensable for a port to attract flows to a region and retain them. The capacity decision is the result of a trade-off between investment and waiting costs. Traditional methods to value expansion projects do not deal adequately with managerial flexibility in the face of uncertainty from different sources in the complex port environment. In this paper, real options (RO) models are identified as an alternative method to making project valuations and investment decisions, as they attribute the correct value to managerial flexibility under uncertainty. In order to be able to build and use such RO models for port capacity investment decisions, the sources and implications of uncertainty in the port and the different RO model specifications need to be understood. To this end, both the literature about uncertainty in the port context and the literature about real options models are reviewed in order to provide researchers who want to build their own decision-making models, with the necessary knowledge of both fields. The review makes clear that the complex interactions in and competition between the logistics chains and their actors coming together in ports have significant impacts on port capacity. Uncertainty is also caused by uncertain international trade flows and changes in legislation following new technologies and environmental impacts. An analysis of the components of some general RO models shows how the options of flexible output, investment size and timing are valued by RO models in a setting with demand uncertainty. Moreover, the review presents researchers with insights in how to deal with cooperative and competitive interactions in the chain, time to build, cyclical markets and legislation changes. It also shows how to value the expansion and the phased investment options. The new insights resulting from this review are subsequently combined in a framework that serves as a guideline to build RO models for port capacity investments. Finally, an exemplifying application of the framework is used to build an actual port capacity investment decision model.  相似文献   

13.
In studies of parking policy, the role of parking pricing has been addressed. Most researches have focused on the determination of a proper price for city parking spaces that are open to the public and it is now evident that price is used by authorities as a tool to manage transport demand. However, studies of parking pricing that pertain to privately-owned parking resources are few and in particular, the problem of setting a proper price for physical market parking has rarely been studied, such as a mall’s ‘dual-pricing portfolio’ decision for the simultaneous determination of a parking fee and the consumer spending required for free parking (i.e., the ‘threshold’). This is a common problem for most malls, but the different agents involved (e.g., the visitors, the mall, the marketplace and the parking lot departments) usually have diverse goals, so the decision must take account of a multiplicity of criteria and subtle relationships. In order to systematically support this type of inter-departmental decision process, a decision model that includes an analytical decision-aid process and the relevant programming models is established. A numerical example verifies the proposed model by taking the data for a mall in Taiwan and the implications, in terms of management, are given. This systematic computational model can be generalized to any type of commercial market that requires a (new) parking pricing policy.  相似文献   

14.
15.
16.
This paper proposes a behavior-based consistency-seeking (BBCS) model as an alternative to the dynamic traffic assignment paradigm for the real-time control of traffic systems under information provision. The BBCS framework uses a hybrid probabilistic–possibilistic model to capture the day-to-day evolution and the within-day dynamics of individual driver behavior. It considers heterogeneous driver classes based on the broad behavioral characteristics of drivers elicited from surveys and past studies on driver behavior. Fuzzy logic and if–then rules are used to model the various driver behavior classes. The approach enables the modeling of information characteristics and driver response to be more consistent with the real-world. The day-to-day evolution of driver behavior characteristics is reflected by updating the appropriate model parameters based on the current day’s experience. The within-day behavioral dynamics are reactive and capture drivers’ actions vis-à-vis the ambient driving conditions by updating the weights associated with the relevant if–then rules. The BBCS model is deployed by updating the ambient driver behavior class fractions so as to ensure consistency with the real-time traffic sensor measurements. Simulation experiments are conducted to investigate the real-time applicability of the proposed framework to a real-world network. The results suggest that the approach can reasonably capture the within-day variations in driver behavior model parameters and class fractions in the traffic stream. Also, they indicate that deployment-capable information strategies can be used to influence system performance. From a computational standpoint, the approach is real-time deployable.  相似文献   

17.
Emerging sensing technologies such as probe vehicles equipped with Global Positioning System (GPS) devices on board provide us real-time vehicle trajectories. They are helpful for the understanding of the cases that are significant but difficult to observe because of the infrequency, such as gridlock networks. On the premise of this type of emerging technology, this paper propose a sequential route choice model that describes route choice behavior, both in ordinary networks, where drivers acquire spatial knowledge of networks through their experiences, and in extraordinary networks, which are situations that drivers rarely experience, and applicable to real-time traffic simulations. In extraordinary networks, drivers do not have any experience or appropriate information. In such a context, drivers have little spatial knowledge of networks and choose routes based on dynamic decision making, which is sequential and somewhat forward-looking. In order to model these decision-making dynamics, we propose a discounted recursive logit model, which is a sequential route choice model with the discount factor of expected future utility. Through illustrative examples, we show that the discount factor reflects drivers’ decision-making dynamics, and myopic decisions can confound the network congestion level. We also estimate the parameters of the proposed model using a probe taxis’ trajectory data collected on March 4, 2011 and on March 11, 2011, when the Great East Japan Earthquake occurred in the Tokyo Metropolitan area. The results show that the discount factor has a lower value in gridlock networks than in ordinary networks.  相似文献   

18.
This paper develops an agent-based modeling approach to predict multi-step ahead experienced travel times using real-time and historical spatiotemporal traffic data. At the microscopic level, each agent represents an expert in a decision-making system. Each expert predicts the travel time for each time interval according to experiences from a historical dataset. A set of agent interactions is developed to preserve agents that correspond to traffic patterns similar to the real-time measurements and replace invalid agents or agents associated with negligible weights with new agents. Consequently, the aggregation of each agent’s recommendation (predicted travel time with associated weight) provides a macroscopic level of output, namely the predicted travel time distribution. Probe vehicle data from a 95-mile freeway stretch along I-64 and I-264 are used to test different predictors. The results show that the agent-based modeling approach produces the least prediction error compared to other state-of-the-practice and state-of-the-art methods (instantaneous travel time, historical average and k-nearest neighbor), and maintains less than a 9% prediction error for trip departures up to 60 min into the future for a two-hour trip. Moreover, the confidence boundaries of the predicted travel times demonstrate that the proposed approach also provides high accuracy in predicting travel time confidence intervals. Finally, the proposed approach does not require offline training thus making it easily transferable to other locations and the fast algorithm computation allows the proposed approach to be implemented in real-time applications in Traffic Management Centers.  相似文献   

19.
Travel to and from school can have social, economic, and environmental implications for students and their parents. Therefore, understanding school travel mode choice behavior is essential to find policy-oriented approaches to optimizing school travel mode share. Recent research suggests that psychological factors of parents play a significant role in school travel mode choice behavior and the Multiple Indicators and Multiple Causes (MIMIC) model has been used to test the effect of psychological constructs on mode choice behavior. However, little research has used a systematic framework of behavioral theory to organize these psychological factors and investigate their internal relationships. This paper proposes an extended theory of planned behavior (ETPB) to delve into the psychological factors caused by the effects of adults’ cognition and behavioral habits and explores the factors’ relationship paradigm. A theoretical framework of travel mode choice behavior for students in China is constructed. We established the MIMIC model that accommodates latent variables from ETPB. We found that not all the psychological latent variables have significant effects on school travel mode choice behavior, but habit can play an essential role. The results provide theoretical support for demand policies for school travel.  相似文献   

20.
Most deterministic day-to-day traffic evolution models, either in continuous-time or discrete-time space, have been formulated based on a fundamental assumption on driver route choice rationality where a driver seeks to maximize her/his marginal benefit defined as the difference between the perceived route costs. The notion of rationality entails the exploration of the marginal decision rule from economic theory, which states that a rational individual evaluates his/her marginal utility, defined as the difference between the marginal benefit and the marginal cost, of each incremental decision. Seeking to analyze the marginal decision rule in the modeling of deterministic day-to-day traffic evolution, this paper proposes a modeling framework which introduces a term to capture the marginal cost to the driver induced by route switching. The proposed framework enables to capture both benefit and cost associated with route changes. The marginal cost is then formulated upon the assumption that drivers are able to predict other drivers’ responses to the current traffic conditions, which is adopted based on the notion of strategic thinking of rational players developed in behavior game theory. The marginal cost based on 1-step strategic thinking also describes the “shadow price” of shifting routes, which helps to explain the behavioral tendency of the driver perceiving the cost-sensitivity to link/route flows. After developing a formulation of the marginal utility day-to-day model, its theoretical properties are analyzed, including the invariance property, asymptotic stability, and relationship with the rational behavioral adjustment process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号