首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a predictive dynamic traffic assignment model in congested capacity-constrained road networks is formulated. A traffic simulator is developed to incrementally load the traffic demand onto the network, and updates the traffic conditions dynamically. A time-dependent shortest path algorithm is also given to determine the paths with minimum actual travel time from an origin to all the destinations. The traffic simulator and time-dependent shortest path algorithm are employed in a method of successive averages to solve the dynamic equilibrium solution of the problem. A numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

2.
Abstract

A multimodal trip planner that produces optimal journeys involving both public transport and private vehicle legs has to solve a number of shortest path problems, both on the road network and the public transport network. The algorithms that are used to solve these shortest path problems have been researched since the late 1950s. However, in order to provide accurate journey plans that can be trusted by the user, the variability of travel times caused by traffic congestion must be taken into consideration. This requires the use of more sophisticated time-dependent shortest path algorithms, which have only been researched in depth over the last two decades, from the mid-1990s. This paper will review and compare nine algorithms that have been proposed in the literature, discussing the advantages and disadvantages of each algorithm on the basis of five important criteria that must be considered when choosing one or more of them to implement in a multimodal trip planner.  相似文献   

3.
This paper proposes an alternative algorithm to solve the median shortest path problem (MSPP) in the planning and design of urban transportation networks. The proposed vector labeling algorithm is based on the labeling of each node in terms of a multiple and conflicting vector of objectives which deletes cyclic, infeasible and extreme-dominated paths in the criteria space imposing cyclic break (CB), path cost constraint (PCC) and access cost parameter (ACP) respectively. The output of the algorithm is a set of Pareto optimal paths (POP) with an objective vector from predetermined origin to destination nodes. Thus, this paper formulates an algorithm to identify a non-inferior solution set of POP based on a non-dominated set of objective vectors that leaves the ultimate decision to decision-makers. A numerical experiment is conducted using an artificial transportation network in order to validate and compare results. Sensitivity analysis has shown that the proposed algorithm is more efficient and advantageous over existing solutions in terms of computing execution time and memory space used.  相似文献   

4.
Intelligent transport systems provide various means to improve traffic congestion in road networks. Evaluation of the benefits of these improvements requires consideration of commuters’ response to reliability and/or uncertainty of travel time under various circumstances. Various disruptions cause recurrent or non-recurrent congestion on road networks, which make road travel times intrinsically fluctuating and unpredictable. Confronted with such uncertain traffic conditions, commuters are known to develop some simple decision-making process to adjust their travel choices. This paper represents the decision-making process involved in departure-time and route choices as risk-taking behavior under uncertainty. An expected travel disutility function associated with commuters’ departure-time and route choices is formulated with taking into account the travel delay (due the recurrent congestion), the uncertainty of travel times (due to incident-induced congestion) and the consequent early or late arrival penalty. Commuters are assumed to make decision on the departure-time and route choices on the basis of the minimal expected travel disutility. Thus the network will achieve a simultaneous route and departure-time user equilibrium, in which no commuter can decrease his or her expected disutility by unilaterally changing the route or departure-time. The equilibrium is further formulated as an equivalent nonlinear complementarity problem and is then converted into an unconstrained minimization problem with the use of a gap function suggested recently. Two algorithms based on the Nelder–Mead multidimensional simplex method and the heuristic route/time-swapping approach, are adapted to solve the problem. Finally, numerical example is given to illustrate the application of the proposed model and algorithms.  相似文献   

5.
Different models using belief functions are proposed and compared in this article to share and manage imperfect information about events on the road in vehicular networks. In an environment without infrastructure, the goal is to provide to driver the synthesis of the situation on the road from all acquired information. Different strategies are considered: discount or reinforce towards the absence of the event to take into account messages agings, keep the original messages or only the fusion results in vehicles databases, consider the world update, manage the spatiality of traffic jams by taking into account neighborhood. Methods are tested and compared using a Matlab™ simulator. Two strategies are introduced to tackle fog blankets spatiality; they are compared through an example.  相似文献   

6.
This paper investigates the problem of finding the K reliable shortest paths (KRSP) in stochastic networks under travel time uncertainty. The KRSP problem extends the classical K loopless shortest paths problem to the stochastic networks by explicitly considering travel time reliability. In this study, a deviation path approach is established for finding K α-reliable paths in stochastic networks. A deviation path algorithm is proposed to exactly solve the KRSP problem in large-scale networks. The A* technique is introduced to further improve the KRSP finding performance. A case study using real traffic information is performed to validate the proposed algorithm. The results indicate that the proposed algorithm can determine KRSP under various travel time reliability values within reasonable computational times. The introduced A* technique can significantly improve KRSP finding performance.  相似文献   

7.
Abstract

Based on a review of available data from a database on large‐scale transport infrastructure projects, this paper investigates the hypothesis that traffic forecasts for road links in Europe are geographically biased with underestimated traffic volumes in metropolitan areas and overestimated traffic volumes in remote regions. The present data do not support this hypothesis. Since previous studies have shown a strong tendency to overestimated forecasts of the number of passengers on new rail projects, it could be speculated that road planners are more skilful and/or honest than rail planners. However, during the period when the investigated projects were planned (up to the late 1980s), there were hardly any strong incentives for road planners to make biased forecasts in order to place their projects in a more flattering light. Future research might uncover whether the change from the ‘predict and provide’ paradigm to ‘predict and prevent’ occurring in some European countries in the 1990s has influenced the accuracy of road traffic forecasts in metropolitan areas.  相似文献   

8.
Travel times are generally stochastic and spatially correlated in congested road networks. However, very few existing route guidance systems (RGS) can provide reliable guidance services to aid travellers planning their trips with taking account explicitly travel time reliability constraint. This study aims to develop such a RGS with particular consideration of travellers' concern on travel time reliability in congested road networks with uncertainty. In this study, the spatially dependent reliable shortest path problem (SD‐RSPP) is formulated as a multi‐criteria shortest path‐finding problem in road networks with correlated link travel times. Three effective dominance conditions are established for links with different levels of travel time correlations. An efficient algorithm is proposed to solve SD‐RSPP by adaptively using three established dominance conditions. The complexities of road networks in reality are also explicitly considered. To demonstrate the applicability of proposed algorithm, a comprehensive case study is carried out in Hong Kong. The results of case study show that the proposed solution algorithm is robust to take account of travellers' multiple routing criteria. Computational results demonstrate that the proposed solution algorithm can determine the reliable shortest path on real‐time basis for large‐scale road networks. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Traditionally, an assessment of transport network vulnerability is a computationally intensive operation. This article proposes a sensitivity analysis-based approach to improve computational efficiency and allow for large-scale applications of road network vulnerability analysis. Various vulnerability measures can be used with the proposed method. For illustrative purposes, this article adopts the relative accessibility index (AI), which follows the Hansen integral index, as the network vulnerability measure for evaluating the socio-economic effects of link (or road segment) capacity degradation or closure. Critical links are ranked according to the differences in the AIs between normal and degraded networks. The proposed method only requires a single computation of the network equilibrium problem. The proposed technique significantly reduces computational burden and memory storage requirements compared with the traditional approach. The road networks of the Sioux Falls city and the Bangkok metropolitan area are used to demonstrate the applicability and efficiency of the proposed method. Network manager(s) or transport planner(s) can use this approach as a decision support tool for identifying critical links in road networks. By improving these critical links or constructing new bypass roads (or parallel paths) to increase capacity redundancy, the overall vulnerability of the networks can be reduced.  相似文献   

10.
Interest at the political level in congestion charging is gaining pace as cities struggle with ways to reduce the effects of growing traffic congestion on the liveability of cities. Despite a long history of promotion of a wide array of travel demand management (TDM) initiatives, very few have had a noticeable impact on the levels of traffic on the road networks of metropolitan areas. TDM success in this context has almost become ‘band-aid’ in the absence of a pricing strategy that not only promotes efficient use of the system but also hypothecates revenues to support essential complementary infrastructure and services such as public transport. This paper takes a look at the stream of pricing consciousness that is surfacing around the world. Although very few jurisdictions have implemented congestion charging, or any form of efficient variable car and truck user charging, the winds of change are well in place. The adage “it is not a matter of if but of when” seems to be the prevailing view. Our overview of global trends in positioning the debate and hopefully follow-through commitment to implementation provides a backdrop to papers submitted for this special issue on travel demand management. The predominance of papers on pricing is indicative of the priority that must be given to efficient charging and revenue disbursement.  相似文献   

11.
In this paper, we consider a particular class of network flow problems that seeks a shortest path, if it exists, between a source node s and a destination node d in a connected digraph, such that we arrive at node d at a specified time τ while leaving node s no earlier than a lower-bounding time LB, and where the availability of each network link is time-dependent in the sense that it can be traversed only during specified intervals of time. We refer to this problem as the reverse time-restricted shortest path problem (RTSP), and it arises, for example, in the context of generating flight plans within air traffic management approaches under severe convective weather conditions. We show that this problem is NP-hard in general, but is polynomially solvable under a special regularity condition. A pseudo-polynomial time dynamic programming algorithm is developed to solve Problem RTSP, along with an effective heap implementation strategy. Computational results using real flight generation test cases as well as random simulated problems are presented.  相似文献   

12.
This article presents a Web-based transit information system design that uses Internet Geographic Information Systems (GIS) technologies to integrate Web serving, GIS processing, network analysis and database management. A path finding algorithm for transit network is proposed to handle the special characteristics of transit networks, e.g., time-dependent services, common bus lines on the same street, and non-symmetric routing with respect to an origin/destination pair. The algorithm takes into account the overall level of services and service schedule on a route to determine the shortest path and transfer points. A framework is created to categorize the development of transit information systems on the basis of content and functionality, from simple static schedule display to more sophisticated real time transit information systems. A unique feature of the reported Web-based transit information system is the Internet-GIS based system with an interactive map interface. This enables the user to interact with information on transit routes, schedules, and trip itinerary planning. Some map rendering, querying, and network analysis functions are also provided.  相似文献   

13.
Complexity in transport networks evokes the need for instant response to the changing dynamics and uncertainties in the upstream operations, where multiple modes of transport are often available, but rarely used in conjunction. This paper proposes a model for strategic transport planning involving a network wide intermodal transport system. The system determines the spatio-temporal states of road based freight networks (unimodal) and future traffic flow in definite time intervals. This information is processed to devise efficient scheduling plans by coordinating and connecting existing rail transport schedules to road based freight systems (intermodal). The traffic flow estimation is performed by kernel based support vector mechanisms while mixed integer programming (MIP) is used to optimize schedules for intermodal transport network by considering various costs and additional capacity constraints. The model has been successfully applied to an existing Fast Moving Consumer Goods (FMCG) distribution network in India with encouraging results.  相似文献   

14.
This paper deals with an interesting problem about how to efficiently compute the number of different efficient paths between an origin‐destination pair for a transportation network because these efficient paths are the possible paths used by drivers to some extent. Based on a novel triangle operation derived, it first presents a polynomial‐time combinatorial algorithm that can obtain the number of different simple paths between any two nodes for an acyclic network as well as the total travel cost of these paths. This paper proceeds to develop a combinatorial algorithm with polynomial‐time complexity for both counting the different efficient paths between an origin‐destination pair and calculating the total travel cost of these paths. As for applications, this paper shows that the preceding two algorithms can yield the lower and upper bounds for the number of different simple paths between an origin‐destination pair, while it has already be recognized that a polynomial‐time algorithm getting such a number does not exist for a general network. Furthermore, the latter algorithm can be applied for developing a heuristic method for the traffic counting location problem arising from the origin‐destination matrix estimation problems.  相似文献   

15.
Transportation networks are often subjected to perturbed conditions leading to traffic disequilibrium. Under such conditions, the traffic evolution is typically modeled as a dynamical system that captures the aggregated effect of paths-shifts by drivers over time. This paper proposes a day-to-day (DTD) dynamical model that bridges two important gaps in the literature. First, existing DTD models generally consider current path flows and costs, but do not factor the sensitivity of path costs to flow. The proposed DTD model simultaneously captures all three factors in modeling the flow shift by drivers. As a driver can potentially perceive the sensitivity of path costs with the congestion level based on past experience, incorporating this factor can enhance real-world consistency. In addition, it smoothens the time trajectory of path flows, a desirable property for practice where the iterative solution procedure is typically terminated at an arbitrary point due to computational time constraints. Second, the study provides a criterion to classify paths for an origin–destination pair into two subsets under traffic disequilibrium: expensive paths and attractive paths. This facilitates flow shifts from the set of expensive paths to the set of attractive paths, enabling a higher degree of freedom in modeling flow shift compared to that of shifting flows only to the shortest path, which is behaviorally restrictive. In addition, consistent with the real-world driver behavior, it also helps to preclude flow shifts among expensive paths. Improved behavioral consistency can lead to more meaningful path/link time-dependent flow profiles for developing effective dynamic traffic management strategies for practice. The proposed DTD model is formulated as the dynamical system by drawing insights from micro-economic theory. The stability of the model and existence of its stationary point are theoretically proven. Results from computational experiments validate its modeling properties and illustrate its benefits relative to existing DTD dynamical models.  相似文献   

16.
Gehlot  Hemant  Sadri  Arif M.  Ukkusuri  Satish V. 《Transportation》2019,46(6):2419-2440

Hurricanes are costly natural disasters periodically faced by households in coastal and to some extent, inland areas. A detailed understanding of evacuation behavior is fundamental to the development of efficient emergency plans. Once a household decides to evacuate, a key behavioral issue is the time at which individuals depart to reach their destination. An accurate estimation of evacuation departure time is useful to predict evacuation demand over time and develop effective evacuation strategies. In addition, the time it takes for evacuees to reach their preferred destinations is important. A holistic understanding of the factors that affect travel time is useful to emergency officials in controlling road traffic and helps in preventing adverse conditions like traffic jams. Past studies suggest that departure time and travel time can be related. Hence, an important question arises whether there is an interdependence between evacuation departure time and travel time? Does departing close to the landfall increases the possibility of traveling short distances? Are people more likely to depart early when destined to longer distances? In this study, we present a model to jointly estimate departure and travel times during hurricane evacuations. Empirical results underscore the importance of accommodating an inter-relationship among these dimensions of evacuation behavior. This paper also attempts to empirically investigate the influence of social ties of individuals on joint estimation of evacuation departure and travel times. Survey data from Hurricane Sandy is used for computing empirical results. Results indicate significant role of social networks in addition to other key factors on evacuation departure and travel times during hurricanes.

  相似文献   

17.
Congested road and air networks, coupled with the idea that transport systems should be balanced, have spawned the field of intercity intermodal passenger transport which is based on travel across connected networks that is as seamless as possible. There is a very large number of attributes that affect the objective and subjective quality of travel. Intercity public transport planning therefore requires an excellent understanding of connections between different services and how the quality of these connections affects passengers, operators and the society at large. This article reviews the vast literature over the last 20 years from Europe, North America and Asia that is related to intercity travel, the connectivity of transport and cooperation between different modes of transport and presents a simple yet powerful way to perceive connected transport systems. The article then reviews planning practice at a variety of states worldwide, and suggests a set of focus areas of research or gaps that once filled, the authors expect, will allow further development of connected intercity passenger travel.  相似文献   

18.
This study measures urban form as indicators of metropolitan sprawl and explores its impact on commuting trips and NOx and CO2 emissions from road traffic in all metropolitan statistical areas (MSAs) and four groups’ MSAs separated by population in the continental United States. Encompassing all MSAs, the study adds the accessibility factor to four existing factors: density, land use mix, centeredness, and street connectivity. The study establishes multivariate regression models between urban form, commuting trips, and emissions from road traffic while controlling for socioeconomic conditions. The study shows that urban form index and five urban form factors have a statistically significant association with commuting trips, NOx and CO2 emissions from road traffic. In four MSA groups as determined by MSA population size, higher values of urban form factors (i.e., lower sprawl) are statistically associated with more walking commuters. On the other hand, higher values of urban form factors are associated with fewer commuting vehicles per household in large MSAs with the moderate effect, a lower average commuting drive time in medium and small MSAs, and more commuters using public transportation in medium and large MSAs. This study provides an urban form index covering all metropolitan areas in the continental United States by adding another urban form factor, and the findings show that urban form factors have different effects on mode choices, drive time, and emission from road traffic depending on the MSA population size.  相似文献   

19.
This is research is aimed at elaborating a new methodology of shortest path finding by utilizing the methods of taxonomy and genetic algorithms. Combination of the two is developed and called Genetic Taxonomy Evaluator (GTE) which is expected to be an alternative tool to solve shortest path finding problems within the transportation networks While keeping the properties of transportation networks Taxonomy Reconstructor (TR) transforms the network representation into taxonomic structure, which is hierarchically shaped, based on problem to be solved. In the process TR also creates classification of nodes in the network. This classification provides facilities to isolate the problem to the core, and the criteria that can be inserted in the Genetic Algorithm (GA). A package program for GTE is then developed in C-Language and performance of model is analyzed upon a medium scale of Sioux-Falls City Network. In conclusion, it is found that to achieve fairly quick convergence of GTE computation several optimal parameters of GA should be determined prior to searching for the shortest paths. And since GTE has only been applied to limited case, it is suggested that the findings could be a threshold for further researches.  相似文献   

20.
The main obstacles to boosting the bicycle as a mode of transport are safety concerns due to interactions with motorized traffic. One option is to separate cyclists from motorists through exclusive bicycle priority lanes. This practice is easily implemented in uncongested traffic. Enforcing bicycle lanes on congested roads may degenerate the network, making the idea very hard to sell both to the public and the traffic authorities. Inspired by Braess Paradox, we take an unorthodox approach to seeking latent misutilized capacity in the congested networks to be dedicated to exclusive bicycle lanes. The aim of this study is to tailor an efficient and practical method to large size urban networks. Hence, this paper appeals to policy makers in their quest to scientifically convince stakeholder that bicycle is not a secondary mode, rather, it can be greatly accommodated along with other modes even in the heart of the congested cities. In conjunction with the bicycle lane priority, other policy measures such as shared bicycle scheme, electric-bike, integration of public transport and bicycle are also discussed in this article. As for the mathematical methodology, we articulated it as a discrete bilevel mathematical programing. In order to handle the real networks, we developed a phased methodology based on Branch-and-Bound (as a solution algorithm), structured in a less intensive RAM manner. The methodology was tested on real size network of city of Winnipeg, Canada, for which the total of 30 road segments – equivalent to 2.77 km bicycle lanes – in the CBD were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号