首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Experts predict that new automobiles will be capable of driving themselves under limited conditions within 5–10 years, and under most conditions within 10–20 years. Automation may affect road vehicle energy consumption and greenhouse gas (GHG) emissions in a host of ways, positive and negative, by causing changes in travel demand, vehicle design, vehicle operating profiles, and choices of fuels. In this paper, we identify specific mechanisms through which automation may affect travel and energy demand and resulting GHG emissions and bring them together using a coherent energy decomposition framework. We review the literature for estimates of the energy impacts of each mechanism and, where the literature is lacking, develop our own estimates using engineering and economic analysis. We consider how widely applicable each mechanism is, and quantify the potential impact of each mechanism on a common basis: the percentage change it is expected to cause in total GHG emissions from light-duty or heavy-duty vehicles in the U.S. Our primary focus is travel related energy consumption and emissions, since potential lifecycle impacts are generally smaller in magnitude. We explore the net effects of automation on emissions through several illustrative scenarios, finding that automation might plausibly reduce road transport GHG emissions and energy use by nearly half – or nearly double them – depending on which effects come to dominate. We also find that many potential energy-reduction benefits may be realized through partial automation, while the major energy/emission downside risks appear more likely at full automation. We close by presenting some implications for policymakers and identifying priority areas for further research.  相似文献   

2.
The recent increase in demand for performance‐driven and outcome‐based transportation planning makes accurate and reliable performance measures essential. Vehicle miles traveled (VMT), the total miles traveled by all vehicles on roadways, has been utilized widely as a proxy for traffic impact assessment, vehicle emissions, gasoline consumption, and crashes. Accordingly, a number of studies estimate VMT using diverse data sources. This study estimates VMT in the urban area of Bucheon, South Korea, by predicting the annual average daily traffic for unmeasured locations using spatial interpolation techniques (i.e., regression kriging and linear regression). The predictive performance of this method is compared with that of the existing Highway Performance Monitoring System (HPMS) method. The results show that regression kriging could provide more accurate VMT estimates than the HPMS method and linear regression, especially with a small sample size. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The effects of fuel price on travel demand for different income groups reveal the choices and constraints they are faced with. The first purpose of this study is to understand these underlying choices and constraints by examining the variation of fuel price elasticity of vehicle miles travelled (VMT) across income groups. On the other hand, the rebound effect—increase in VMT as a result of improvement in fuel efficiency may offset the negative effect of fuel price on VMT. The second purpose of this study is to compare the relative magnitudes of the fuel price elasticity of VMT and the rebound effect. A system of structural equations with VMT and fuel efficiency (MPG, miles per gallon) as endogenous variables is estimated for households at different income levels from 2009 National Household Travel Survey. Higher income households show greater fuel price elasticity than lower income households. Fuel price elasticities are found to be ?0.41 and ?0.35 for the two highest income groups, while an elasticity of ?0.24 for the lowest income group is identified. The rebound effect is found to be only significant for the lowest income households as 0.7. These findings suggest the potential ability of using fuel price as a tool to affect VMT. The study results also suggest possible negative consequences faced by lower income households given an increase in fuel price and call for more studies in this area.  相似文献   

4.
Demand for housing in Malaysia grew noticeably in 1960s and expanded rapidly in the late 1980s and beyond as a result of rapid urbanization. The same scenario repeats itself in Iskandar Malaysia, a southern development corridor located in Johor, Malaysia where close to three hundred housing developments have been launched from pre-1980s to 2000s. These housing developments are believed to have undergone a layout design evolution affecting land use distribution, road network design, density and many other neighborhood metrics. Thus, this study investigates the impact of housing development designs on vehicle miles traveled (VMT) as they evolve over the decades. Evolution in layout design is discussed in terms of the 4Ds of urban form factors: density, diversity, design (street connectivity and intersection density) and destination accessibility (proximity). Twenty four housing areas developed within decades of pre-1980s to the 2000s were selected and travel diaries of their randomly selected households were recorded. The results obtained show that urban form and demographic factors explain almost 87% of the variances in household VMT and the three main design factors influencing VMT are housing density, proximity index (destination accessibility) and diversity index. The findings of the study show that there is a decreasing trend in density, (land use) diversity, connectivity and destination accessibility of the housing areas. While the results obtained confirm the prevalent theory on the relationship between neighborhood design and VMT, unfortunately for the study area the average VMT has been increasing with the recent housing areas.  相似文献   

5.
Trip chaining represents a way to reduce vehicle miles traveled (VMT) that does not require people to shift away from driving private automobiles. While the existing literature on trip chaining acknowledges this potential, little has been done by way of quantifying this. This research seeks to fill this gap by using a large travel survey from the San Francisco Bay area to model the VMT generated by automobile tours as a function of tour composition (i.e., the number and type of destinations on that tour). The model results indicate that many tours involving trips chains (i.e., those tours with more than one destination) generate significantly less VMT than would occur if the destinations in these tours were split into multiple tours with single destinations. Tours that combine a work and non-work destination (which are the most common types of trip chains) particularly demonstrate potential for VMT reduction. Adding a non-work destination to a work tour is usually (depending on the specific type of destination) predicted to result in a reduction of 6–11 VMT, or about 20–30 %. Adding two non-work destinations to a work tour is usually predicted to result in a reduction of 10–22 VMT, or about 25–50 %.  相似文献   

6.
With vehicle miles of travel increasing at a faster pace than population, one strategy being actively pursued by both state and local governments is compact development. California recently passed legislation that aggressively promotes sustainability by endorsing and rewarding compact development. Likewise, the California Air Resources Board has set a statewide reduction target of 5MMT of greenhouse gas reductions from land use, based largely on achieving compact development patterns. In this paper, we use a multivariate two-part model with instrumental variables, which corrects for residential location self-selection bias. We use a much larger and more geographically representative travel survey on household travel patterns and socio-economic characteristics than represented in previous California studies; this allows us to robustly consider other influences on travel. Our results indicate that, all else equal, a 10% in residential density would reduce VMT by 1.9%. This elasticity is larger than the reported in previous econometric studies for the US, and specifically for California. However, as we show, the magnitude of this impact is still low considering reasonable ranges for policies aimed to increase residential density.  相似文献   

7.
In suburban areas, combining the use of electric vehicles (EV) and transit systems in an EV Park-Charge-Ride (PCR) approach can potentially help improve transit accessibility, facilitate EV charging and adoption, and reduce the need for long-distance driving and ensuing impacts. Despite the anticipated growth of EV adoption and charging demand, PCR programs are limited. With a focus on multi-modal trips, this study proposes a generic planning process that integrates EV infrastructure development with transit systems, develops a systematic assessment approach to fostering the PCR adoption, and illustrates a case implementation in Chicago. Specifically, this study develops a Suitability Index (SI) for EV charging locations at parking spots that are suitable for both EV charging and transit connections. SI can be customized for short-term and long-term planning scenarios. SI values are derived in Chicago as an example for (1) commuter rail stations (for work trips), and (2) shopping centers near transit stops as potential opportunities for additional weekday parking and EV charging (for multi-purpose trips/MPT). Furthermore, carbon emissions and vehicle miles travelled (VMT) across various travel modes and trip scenarios (i.e., work trips and MPT) are calculated. Compared to the baseline of driving a conventional vehicle, this study found that an EV PCR commuter can reduce up to 87% of personal VMT and 52% of carbon emissions. A more active role of the public sector in the PCR program development is recommended.  相似文献   

8.
A number of recent studies have examined the hypothesis of induced travel in an attempt to quantify the phenomenon (Hansen & Huang 1997; Noland, forthcoming). No study has yet attempted to adjust for potential simultaneity bias in the results. This study addresses this issue by the use of an instrumental variable (two stage least squares) approach. Metropolitan level data compiled by the Texas Transportation Institute for their annual congestion report is used in the analysis and urbanized land area is used as an instrument for lane miles of capacity. While this is not an ideal instrument, results still suggest a strong causal relationship but probably that most previous work has had an upward bias in the coefficient estimates. The effect of lane mile additions on VMT growth is forecast and found to account for about 15% of annual VMT growth with substantial variation between metropolitan areas. This effect appears to be closely correlated with percent growth in lane miles, suggesting that rapidly growing areas can attribute a greater share of their VMT growth to growth in lane miles.  相似文献   

9.
On February 20, 1986, the regular monthly meeting of the Southern California Association of Governments (SCAG) Transportation and Communications Committee was held as a two-way videoconference. Analysis of travel changes associated with the videoconference showed that vehicle miles traveled actually increased, compared to an average meeting held at the usual single location at SCAG offices. Although the average distance per person to the nearest teleconference site was 24% lower than the distance to the SCAG offices, the attendance at the teleconference was so much higher than average that total VMT was 29% higher than for a typical meeting held at SCAG.  相似文献   

10.
The transportation impacts of center-based telecommuting for 24 participants (representing 69 person-days of travel and 295 trips) in the California Neighborhood Telecenters Project are analyzed. Comparing non-telecommuting (NTC) day to telecommuting (TC) day travel shows that person-trips did not change significantly, whereas vehicle-trips increased significantly (by about one trip) on TC days. Both PMT and VMT decline significantly on TC days: by an average of 68 miles (74%) and 38 miles (65%), respectively. When these savings are weighted by the frequency of telecommuting, overall reductions in PMT and VMT come to 19% and 17%, respectively, of total weekday travel. Commute trips increase slightly (by 0.5 trips) but significantly, mainly due to lunch-time trips made home from the telecenter. Total non-commute travel does not increase, but there is a significant shift from other modes to driving alone on TC days. Commute mode split on NTC days is not affected by telecommuting. Travel on TC days tends to be compressed into fewer hours. Higher numbers of return home, eat meal, shopping, and social/recreational trips are made on TC days, in exchange for a reduction (to zero) in the number of change mode trips.  相似文献   

11.
This research investigates freeway-flow impacts of different traveler types by specifying and applying a latent-segmentation model of congested and uncongested driving behaviors. Drivers in uncongested conditions are assumed to drive at self-chosen speeds, while drivers in congested conditions are assumed to take speed as given and choose a spacing (between their vehicle and the previous vehicle). Several classes of driver-vehicle combinations are distinguished in a data set based on double-loop-detector pulses and a household travel survey. These classifications are made on the basis of vehicle type and gender, leading to class estimates of speeds and spacings. The segmentation model is specified as a logit function of density, weather, and vehicle type, leading to estimates of congested-condition probabilities. Unobserved heterogeneity is incorporated in all models via common error assumptions.Results indicate that segmentation models are promising tools for traffic data analysis and that information on travelers, their vehicles, and weather conditions explains significant variation in flow data. By clarifying a greater understanding of traffic conditions and traveler behavior explains much scatter in the fundamental relation between flow, speed, and density, can assist regions in their traffic-management efforts and engineers in their design of roadway facilities. Ultimately, such improvements to travel networks should enhance quality of life.  相似文献   

12.
Household vehicle miles of travel (VMT) has been exhibiting a steady growth in post-recession years in the United States and has reached record levels in 2017. With transportation accounting for 27 percent of greenhouse gas emissions, planning professionals are increasingly seeking ways to curb vehicular travel to advance sustainable, vibrant, and healthy communities. Although there is considerable understanding of the various factors that influence household vehicular travel, there is little knowledge of their relative contribution to explaining variance in household VMT. This paper presents a holistic analysis to identify the relative contribution of socio-economic and demographic characteristics, built environment attributes, residential self-selection effects, and social and spatial dependency effects in explaining household VMT production. The modeling framework employs a simultaneous equations model of residential location (density) choice and household VMT generation. The analysis is performed using household travel survey data from the New York metropolitan region. Model results showed insignificant spatial dependency effects, with socio-demographic variables explaining 33 percent, density (as a key measure of built environment attributes) explaining 12 percent, and self-selection effects explaining 11 percent of the total variance in the logarithm of household VMT. The remaining 44 percent remains unexplained and attributable to omitted variables and unobserved idiosyncratic factors, calling for further research in this domain to better understand the relative contribution of various drivers of household VMT.  相似文献   

13.
School travel is becoming increasingly car-based and this is leading to many environmental and health implications for children all over the world. One of several reasons for this is that journey to school distances have increased over time. This is a trend that has been reinforced in some countries by the adoption of so-called ‘school choice’ policies, whereby parents can apply on behalf of their child(ren) to attend any school, and not only the school they live closest to. This paper examines the traffic and environmental impacts of the school choice policy in England. It achieves this by analysing School Census data from 2009 from the Department for Education. Multinomial logit modelling and mixed multinomial logit modelling are used to illustrate the current travel behaviour of English children in their journey to school and examine how there can be a significant reduction in vehicle miles travelled, CO2 emissions and fuel consumption if the ‘school choice’ policy is removed. The model shows that when school choice was replaced by a policy where each child only travelled to their ‘nearest school’ several changes occurred in English school travel. Vehicle Miles Travelled (VMT) by motorised transport fell by 1 % for car travel and 10 % for bus travel per day. The reduction in vehicle miles travelled could lead to less congestion on the roads during the morning rush hour and less cars driving near school gates. Mode choice changed in the modelled scenario. Car use fell from 32 to 22 %. Bus use fell from 12 to 7 %, whilst NMT saw a rise of 17 %. With more children travelling to school by walking or cycling the current epidemic of childhood obesity could also be reduced through active travel.  相似文献   

14.
Growing concerns over climate change have led to an increasing interest in the role of the built environment to reduce transportation greenhouse gas (GHG) emissions. Many studies have reported that compact, mixed-use, and well-connected developments reduce vehicle miles traveled (VMT). Others, however, argue that densification and mixture of land uses can slow down vehicle movements, and consequently generate more driving emissions. Methodologically, VMT is only a proxy, not an exact measure of emissions. This study quantifies the net effects of the built environment on household vehicle emissions through a case study of Austin, TX. The study employed structural equation modeling (SEM) techniques and estimated path models to improve understanding of the relationship between the built environment and vehicle emissions. The results show a rather complex picture of the relationship. Densification can reduce regional vehicle emissions despite its secondary effect of reduced vehicle travel speed. A 1% increase in density was found to reduce household vehicle emissions by 0.1%. However, intensification of the design feature of the built environment in developed areas may work in the opposite direction; the modeling results showed a 1% increase in grid-like network being associated with 0.8% increase in household vehicle emissions. Based on the results, the study addressed the potential of and the challenges to reducing vehicle emissions through modifying the built environment in local areas.  相似文献   

15.
Globalization, greenhouse gas emissions and energy concerns, emerging vehicle technologies, and improved statistical modeling capabilities make the present moment an opportune time to revisit aggregate vehicle miles traveled (VMT), energy consumption, and greenhouse gas (GHG) emissions forecasting for passenger transportation. Using panel data for the 48 continental states during the period 1998-2008, the authors develop simultaneous equation models for predicting VMT on different road functional classes and examine how different technological solutions and changes in fuel prices can affect passenger VMT. Moreover, a random coefficient panel data model is developed to estimate the influence of various factors (such as demographics, socioeconomic variables, fuel tax, and capacity) on the total amount of passenger VMT in the United States. To assess the influence of each significant factor on VMT, elasticities are estimated. Further, the authors investigate the effect of different policies governing fuel tax and population density on future energy consumption and GHG emissions. The presented methodology and estimation results can assist transportation planners and policy-makers in determining future energy and transportation infrastructure investment needs.  相似文献   

16.
Transportation planning today requires an understanding of how income and near-rail residence jointly influence household travel behavior. This article fills a gap in the literature by showing how vehicle miles traveled (VMT) and transit trips taken (TT) vary with income and rail transit access by neighborhood type. Results indicate that, when comparing households with similar incomes and examining how the “near-rail” versus “far from rail” VMT and TT gap varies by income, the cross-sectional reduction in nominal VMT and the increase in TT on a percentage basis is generally larger for higher-income households (>$50,000), and particularly so in neighborhoods dense with both jobs and population. These findings offer support for the notion that near-transit housing targeting higher-income households can have both sustainability and transit use benefits. We note, though, that equity considerations are a strong reason to include low-income housing near rail transit, and argue that policies focusing overly singly on either low-income or high-income housing near rail transit will not be as impactful as a robust focus on mixed-income housing developments in rail transit-oriented developments (TODs).  相似文献   

17.
An important planning and policy question in the transportation, energy, and environment areas is whether or not air quality control and the associated funding preference and mitigation efforts to attain air quality conformity have indeed led to traveler behavior changes such as reduction in vehicle miles traveled (VMT) or VMT growth rates. In this research, we develop statistical models to analyze the relationship between air quality nonattainment designation and VMT between 1966 and 2004 based on observed data. These models employ different statistical methods, including hypothesis testing and simultaneous equations. Findings from these statistical models and datasets are consistent, and suggest there is a statistically significant negative correlation between nonattainment designation and VMT/VMT growth. For instance, the simultaneous equation model in this research, suggests that if a nonattainment area and an attainment area that are similar in all other aspects (population composition, socio-economics, urbanization, fuel price, vehicle stock, etc.) are compared, the VMT in the nonattainment area will be 1.80% less than that in the attainment area in the short run, and 7.61% less in the long run. While these results show strong statistical evidence that efforts in reducing VMT in nonattainment areas have been successful, future research should be conducted to attribute the VMT reduction effects to specific policy instruments for decision-making (e.g. the Congestion Management and Air Quality Improvement program, the conformity regulation in the transportation planning process, etc.).  相似文献   

18.
This paper studies electric vehicle charger location problems and analyzes the impact of public charging infrastructure deployment on increasing electric miles traveled, thus promoting battery electric vehicle (BEV) market penetration. An activity-based assessment method is proposed to evaluate BEV feasibility for the heterogeneous traveling population in the real world driving context. Genetic algorithm is applied to find (sub)optimal locations for siting public charging stations. A case study using the GPS-based travel survey data collected in the greater Seattle metropolitan area shows that electric miles and trips could be significantly increased by installing public chargers at popular destinations, with a reasonable infrastructure investment.  相似文献   

19.
Much of the literature shows that a compact city with well-mixed land use tends to produce lower vehicle miles traveled (VMT), and consequently lower energy consumption and less emissions. However, a significant portion of the literature indicates that the built environment only generates some minor—if any—influence on travel behavior. Through the literature review, we identify four major methodological problems that may have resulted in these conflicting conclusions: self-selection, spatial autocorrelation, inter-trip dependency, and geographic scale. Various approaches have been developed to resolve each of these issues separately, but few efforts have been made to reexamine the built environment-travel behavior relationship by considering these methodological issues simultaneously. The objective of this paper is twofold: (1) to better understand the existing methodological gaps, and (2) to reexamine the effects of built-environment factors on transportation by employing a framework that incorporates recently developed methodological approaches. Using the Seattle metropolitan region as our study area, the 2006 Household Activity Survey and the 2005 parcel and building data are used in our analysis. The research employs Bayesian hierarchical models with built-environment factors measured at different geographic scales. Spatial random effects based on a conditional autoregressive specification are incorporated in the hierarchical model framework to account for spatial contiguity among Traffic Analysis Zones. Our findings indicate that land use factors have highly significant effects on VMT even after controlling for travel attitude and spatial autocorrelation. In addition, our analyses suggest that some of these effects may translate into different empirical results depending on geographic scales and tour types.  相似文献   

20.
We propose an optimization model based on vehicle travel patterns to capture public charging demand and select the locations of public charging stations to maximize the amount of vehicle-miles-traveled (VMT) being electrified. The formulated model is applied to Beijing, China as a case study using vehicle trajectory data of 11,880 taxis over a period of three weeks. The mathematical problem is formulated in GAMS modeling environment and Cplex optimizer is used to find the optimal solutions. Formulating mathematical model properly, input data transformation, and Cplex option adjustment are considered for accommodating large-scale data. We show that, compared to the 40 existing public charging stations, the 40 optimal ones selected by the model can increase electrified fleet VMT by 59% and 88% for slow and fast charging, respectively. Charging demand for the taxi fleet concentrates in the inner city. When the total number of charging stations increase, the locations of the optimal stations expand outward from the inner city. While more charging stations increase the electrified fleet VMT, the marginal gain diminishes quickly regardless of charging speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号