首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Incidents are a major source of traffic congestion and can lead to long and unpredictable delays, deteriorating traffic operations and adverse environmental impacts. The emergence of connected vehicles and communication technologies has enabled travelers to use real-time traffic information. The ability to exchange traffic information among vehicles has tremendous potential impacts on network performance especially in the case of non-recurrent congestion. To this end, this paper utilizes a microscopic simulation model of traffic in El Paso, Texas to investigate the impacts of incidents on traffic operation and fuel consumption at different market penetration rates (MPR) of connected vehicles. Several scenarios are implemented and tested to determine the impacts of incidents on network performance in an urban area. The scenarios are defined by changing the duration of incidents and the number of lanes closed. This study also shows how communication technology affects network performance in response to congestion. The results of the study demonstrate the potential effectiveness of connected vehicle technology in improving network performance. For an incident with a duration of 900?s and MPR of 80%, total fuel consumption and total travel time decreased by approximately 20%; 26% was observed in network-wide travel time and fuel consumption at 100% MPR.  相似文献   

2.
This paper presents a Bayesian inference-based dynamic linear model (DLM) to predict online short-term travel time on a freeway stretch. The proposed method considers the predicted freeway travel time as the sum of the median of historical travel times, time-varying random variations in travel time, and a model evolution error, where the median is employed to recognize the primary travel time pattern while the variation captures unexpected supply (i.e. capacity) reduction and demand fluctuations. Bayesian forecasting is a learning process that revises sequentially the state of a priori knowledge of travel time based on newly available information. The prediction result is a posterior travel time distribution that can be employed to generate a single-value (typically but not necessarily the mean) travel time as well as a confidence interval representing the uncertainty of travel time prediction. To better track travel time fluctuations during non-recurrent congestion due to unforeseen events (e.g., incidents, accidents, or bad weather), the DLM is integrated into an adaptive control framework that can automatically learn and adjust the system evolution noise level. The experiment results based on the real loop detector data of an I-66 segment in Northern Virginia suggest that the proposed method is able to provide accurate and reliable travel time prediction under both recurrent and non-recurrent traffic conditions.  相似文献   

3.
Intelligent transport systems provide various means to improve traffic congestion in road networks. Evaluation of the benefits of these improvements requires consideration of commuters’ response to reliability and/or uncertainty of travel time under various circumstances. Various disruptions cause recurrent or non-recurrent congestion on road networks, which make road travel times intrinsically fluctuating and unpredictable. Confronted with such uncertain traffic conditions, commuters are known to develop some simple decision-making process to adjust their travel choices. This paper represents the decision-making process involved in departure-time and route choices as risk-taking behavior under uncertainty. An expected travel disutility function associated with commuters’ departure-time and route choices is formulated with taking into account the travel delay (due the recurrent congestion), the uncertainty of travel times (due to incident-induced congestion) and the consequent early or late arrival penalty. Commuters are assumed to make decision on the departure-time and route choices on the basis of the minimal expected travel disutility. Thus the network will achieve a simultaneous route and departure-time user equilibrium, in which no commuter can decrease his or her expected disutility by unilaterally changing the route or departure-time. The equilibrium is further formulated as an equivalent nonlinear complementarity problem and is then converted into an unconstrained minimization problem with the use of a gap function suggested recently. Two algorithms based on the Nelder–Mead multidimensional simplex method and the heuristic route/time-swapping approach, are adapted to solve the problem. Finally, numerical example is given to illustrate the application of the proposed model and algorithms.  相似文献   

4.
Significant effects of traffic congestion include the cost associated with extra travel time, fuel consumption, and gas emissions. This paper develops a mathematical function to quantify the monetary impact of transition designs between signal timing plans on users and the environment. This function offers an approach to reduce problems such as excessive travel time, pollution emissions and fuel consumption. The proposed social cost function is evaluated for various transition plans to assess the impact of the number of steps required to adjust signal timing. The relationships between delay, fuel consumption and gas emissions and the number of steps needed to achieve the transition are also analysed.  相似文献   

5.
Rapidly deteriorating travel conditions in U.S. metropolitan areas have led to renewed interest in more effectively managing nonrecurrent congestion. Effective incident management requires an understanding of incident patterns, frequency, and duration. However, such information is limited. This paper presents an analysis of incidents using data from a major Los Angeles, California freeway. Incident patterns are described, and duration is analyzed as a function of incident characteristics. Results indicate that accidents make up a very small proportion of all incidents, but account for a relatively greater share of all incident duration. Major explanatory factors of incident duration include incident type, time of day, truck involvement, and lane closures. The paper concludes with a discussion of alternative approaches to reducing the congestion impacts of incidents.  相似文献   

6.
Traffic incidents constitute a major cause for non-recurrent roadway congestion. This paper proposes a stochastic-programming model for clearing asymmetrical incidents in a network as quickly as possible. A response to an incident is asymmetric when the workloads among response vehicles are uneven due to real-time scheduling considerations. This is to be contrasted with a static (often conservative) allocation of vehicular resources. Such asymmetry, and the attendant efficiency, is attributable to additional services performed while a vehicle takes care of emergent incidents nearby. Other vehicles are simply too far away to be helpful. We articulate a fundamental principle of incident management in a theorem and three corollaries. An elegant (yet practical) corollary suggests that an operator should not dispatch additional response vehicles (say from a depot) when the shortest travel-times to an incident are longer than the remaining work time available from vehicles already at the scene. Otherwise, the maximum number of required vehicles should be dispatched. When executed over all instances of reported incidents on a rolling time horizon, the rule yields the optimal plan. The model is applied toward a network in Central Arkansas for peak and off-peak traffic. It shows that it can properly balance the service requirement of reported incidents with potential ones. Meanwhile, a certain reliability level can be guaranteed by our model—a threshold that can be tightened or relaxed at will. The fast solution time of this linearized model allows for real-time application in the field, as verified by a simulation performed on a Central Arkansas highway network.  相似文献   

7.
Empirical studies showed that travel time reliability, usually measured by travel time variance, is strongly correlated with travel time itself. Travel time is highly volatile when the demand approaches or exceeds the capacity. Travel time variability is associated with the level of congestion, and could represent additional costs for travelers who prefer punctual arrivals. Although many studies propose to use road pricing as a tool to capture the value of travel time (VOT) savings and to induce better road usage patterns, the role of the value of reliability (VOR) in designing road pricing schemes has rarely been studied. By using road pricing as a tool to spread out the peak demand, traffic management agencies could improve the utility of travelers who prefer punctual arrivals under traffic congestion and stochastic network conditions. Therefore, we could capture the value of travel time reliability using road pricing, which is rarely discussed in the literature. To quantify the value of travel time reliability (or reliability improvement), we need to integrate trip scheduling, endogenous traffic congestion, travel time uncertainty, and pricing strategies in one modeling framework. This paper developed such a model to capture the impact of pricing on various costs components that affect travel choices, and the role of travel time reliability in shaping departure patterns, queuing process, and the choice of optimal pricing. The model also shows the benefits of improving travel time reliability in various ways. Findings from this paper could help to expand the scope of road pricing, and to develop more comprehensive travel demand management schemes.  相似文献   

8.
Network area-wide impacts due to major traffic incidents can be assessed using a microsimulation approach. A VISSIM microsimulation model for a motorway network has been developed and is used to quantify impacts of a major incident in terms of associated costs. The modelled results reveal that a 65% capacity reduction results in 36% more incident-induced delay when compared with the application of a 50% capacity reduction assumption for a two-hour incident clearance duration that blocked one lane of a two-lane motorway. Additionally, an incident which caused a full blockage incurred 40 times more associated impact costs when compared with a major incident which caused a one lane blockage. A 23% cost saving can be achieved by clearing one lane of a fully blocked two-hour major traffic incident after 90 minutes, while a 37% cost saving can be achieved by clearing all blockages after 90 minutes.  相似文献   

9.
Traffic congestion has been a growing issue in many metropolitan areas during recent years, which necessitates the identification of its key contributors and development of sustainable strategies to help decrease its adverse impacts on traffic networks. Road incidents generally and crashes specifically have been acknowledged as the cause of a large proportion of travel delays in urban areas and account for 25% to 60% of traffic congestion on motorways. Identifying the critical determinants of travel delays has been of significant importance to the incident management systems, which constantly collect and store the incident duration data. This study investigates the individual and simultaneous differential effects of the relevant determinants on motorway crash duration probabilities. In particular, it applies parametric Accelerated Failure Time (AFT) hazard‐based models to develop in‐depth insights into how the crash‐specific characteristic and the associated temporal and infrastructural determinants impact the duration. AFT models with both fixed and random parameters have been calibrated on one year of traffic crash records from two major Australian motorways in South East Queensland, and the differential effects of determinants on crash survival functions have been studied on these two motorways individually. A comprehensive spectrum of commonly used parametric fixed parameter AFT models, including generalized gamma and generalized F families, has been compared with random parameter AFT structures in terms of goodness of fit to the duration data, and as a result, the random parameter Weibull AFT model has been selected as the most appropriate model. Significant determinants of motorway crash duration included traffic diversion requirement, crash injury type, number and type of vehicles involved in a crash, day of week and time of day, towing support requirement and damage to the infrastructure. A major finding of this research is that the motorways under study are significantly different in terms of crash durations; such that motorway 1 exhibits durations that are on average 19% shorter compared with the durations on motorway 2. The differential effects of explanatory variables on crash durations are also different on the two motorways. The detailed presented analysis confirms that looking at the motorway network as a whole, neglecting the individual differences between roads, can lead to erroneous interpretations of duration and inefficient strategies for mitigating travel delays along a particular motorway.  相似文献   

10.
Significant efforts have been made in modeling a travel time distribution and establishing measures of travel time reliability (TTR). However, the literature on evaluating the factors affecting TTR is not well established. Accordingly, this paper presents an empirical analysis to determine potential factors that are associated with TTR. This study mainly applies the Bayesian Networks model to assess the probabilistic association between road geometry, traffic data, and TTR. The results from this model reveal that land use characteristics, intersection factors, and posted speed limits are directly associated with TTR. Evaluating the strength of the association between TTR and the directly related variables, the log odds ratio analysis indicates that the land use factor has the highest impact (0.83) followed by the intersection factor (0.57). The findings from this study can provide valuable resources to planners and traffic operators in their decision-making to improve TTR with quantitative evidence.  相似文献   

11.
Establishment of effective cooperation between vehicles and transportation infrastructure improves travel reliability in urban transportation networks. Lack of collaboration, however, exacerbates congestion due mainly to frequent stops at signalized intersections. It is beneficial to develop a control logic that collects basic safety message from approaching connected and autonomous vehicles and guarantees efficient intersection operations with safe and incident free vehicle maneuvers. In this paper, a signal-head-free intersection control logic is formulated into a dynamic programming model that aims to maximize the intersection throughput. A stochastic look-ahead technique is proposed based on Monte Carlo tree search algorithm to determine the near-optimal actions (i.e., acceleration rates) over time to prevent movement conflicts. Our numerical results confirm that the proposed technique can solve the problem efficiently and addresses the consequences of existing traffic signals. The proposed approach, while completely avoids incidents at intersections, significantly reduces travel time (ranging between 59.4% and 83.7% when compared to fixed-time and fully-actuated control strategies) at intersections under various demand patterns.  相似文献   

12.
This paper presents a real-time traffic network state estimation and prediction system with built-in decision support capabilities for traffic network management. The system provides traffic network managers with the capabilities to estimate the current network conditions, predict congestion dynamics, and generate efficient traffic management schemes for recurrent and non-recurrent congestion situations. The system adopts a closed-loop rolling horizon framework in which network state estimation and prediction modules are integrated with a traffic network manager module to generate efficient proactive traffic management schemes. The traffic network manger adopts a meta-heuristic search mechanism to construct the schemes by integrating a wide variety of control strategies. The system is applied in the context of Integrated Corridor Management (ICM), which is envisioned to provide a system approach for managing congested urban corridors. A simulation-based case study is presented for the US-75 corridor in Dallas, Texas. The results show the ability of the system to improve the overall network performance during hypothetical incident scenarios.  相似文献   

13.
Urban expressways usually experience several levels of service (LOS) because of the stop-and-go traffic flow caused by congestion. Moreover, multiple shock waves generate at different LOS interfaces. The dynamic of shock waves strongly influences the travel time reliability (TTR) of urban expressways. This study proposes a path TTR model that considers the dynamic of shock waves by using probability-based method to characterize the TTR of urban expressways with shock waves. Two model parameters are estimated, namely distribution of travel time (TT) per unit distance and travel distances in different LOS segments. Generalized extreme value distribution and generalized Pareto distribution are derived as distributions of TT per unit distance for six different LOS. Distribution parameters are estimated by using historical floating car data. Travel distances in different LOS segments are calculated based on shock wave theory. The range of TT along the path, which can help drivers arrange their trips, can be obtained from the TTR model. Finally, comparison is made among the proposed TTR model, generalized Pareto contrast model, which does not consider different LOS or existence of shock waves, and normal contrast model, which assumes TT per unit distance as normal distribution without considering shock wave. Results show that the proposed model achieves higher prediction accuracy and reduces the prediction range of TT. The conclusions can be further extended to TT prediction and assessment of measures to improve reliability of TT in a network.  相似文献   

14.
Traffic incidents are a principal cause of congestion on urban freeways, reducing capacity and creating risks for both involved motorists and incident response personnel. As incident durations increase, the risk of secondary incidents or crashes also becomes problematic. In response to these issues, many road agencies in metropolitan areas have initiated incident management programs aimed at detecting, responding to, and clearing incidents to restore freeways to full capacity as quickly and safely as possible. This study examined those factors that impact the time required by the Michigan Department of Transportation Freeway Courtesy Patrol to clear incidents that occurred on the southeastern Michigan freeway network. These models were developed using traffic flow data, roadway geometry information, and an extensive incident inventory database. A series of parametric hazard duration models were developed, each assuming a different underlying probability distribution for the hazard function. Although each modeling framework provided results that were similar in terms of the direction of factor effects, there was significant variability in terms of the estimated magnitude of these impacts. The generalized F distribution was shown to provide the best fit to the incident clearance time data, and the use of poorer fitting distributions was shown to result in severe over‐estimation or under‐estimation of factor effects. Those factors that were found to impact incident clearance times included the time of day and month when the incident occurred, the geometric and traffic characteristics of the freeway segment, and the characteristics of each incident. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The effect of the application of advanced transport information system (ATIS) and road pricing is studied in a transportation system under non-recurrent congestion. A stochastic network deterministic user equilibrium model (SNDUE) with elastic demand is formulated and used to evaluate the welfare and private impacts of different market penetrations of ATIS, together with road pricing for a simple network. Both marginal first-best road pricing and a second-best fixed road pricing are considered. The incentives of private users to use ATIS are analyzed and the characteristics of optimum tolls as a function of ATIS market penetration are shown. We conclude that ATIS is an efficient and necessary tool to reduce the effects of non-recurrent incidents in a transportation network, especially when non-recurrent congestion causes a significant deterioration of operational conditions of the network. If the impact of non-recurrent incidents on free flow costs is small or is reduced only to congestion effects, the use of road pricing would be more efficient. Social benefits obtained when jointly implementing ATIS and road pricing are practically the same whether first-best or second-best road pricing is used. Considering the private costs perceived by the network users, and the benefits experienced by equipped users, the maximum level of market penetration achieved could be limited because private benefits disappear after certain market penetration is obtained.  相似文献   

16.
This paper presents results from a research case study that examined the distribution of travel time of origin–destination (OD) pairs on a transportation network under incident conditions. Using a transportation simulation dynamic traffic assignment (DTA) model, incident on a transportation network is executed under normal conditions, incident conditions without traveler information availability, and incident conditions assuming that users had perfect knowledge of the incident conditions and could select paths to avoid the incident location. The results suggest that incidents have a different impact on different OD pairs. The results confirm that an effective traveler information system has the potential to ease the impacts of incident conditions network wide. Yet it is also important to note that the use of information may detriment some OD pairs while benefiting other OD pairs. The methodology demonstrated in this paper provides insights into the usefulness of embedding a fully calibrated DTA model into the analysis tools of a traffic management and information center.  相似文献   

17.
The statistical analysis of highway incident duration has become an increasingly import research topic due to the impact that highway incidents (vehicle accidents and disablements) have on traffic congestion. In addition, there is a growing need to evaluate incident management programs that seek to reduce incident duration and incident-induced traffic congestion. We apply hazard-based duration models to statistically evaluate the time it takes detect/report, respond to, and clear incidents. Two-year data from Washington State's incident response team program were used to estimate the hazard models. The model estimation results show that a wide variety of factors significantly affect incident times (i.e. detection/reporting, response, and clearance times), and that different distributional assumptions for the hazard function are appropriate for the different incident times being considered. It was also found that the estimated coefficients were not stable between the two years of data used in model estimation. The findings of this paper provide an important demonstration of method and an empirical basis to assess incident management programs.  相似文献   

18.
The delay costs of traffic disruptions and congestion and the value of travel time reliability are typically evaluated using single trip scheduling models, which treat the trip in isolation of previous and subsequent trips and activities. In practice, however, when activity scheduling to some extent is flexible, the impact of delay on one trip will depend on the actual and predicted travel time on itself as well as other trips, which is important to consider for long-lasting disturbances and when assessing the value of travel information. In this paper we extend the single trip approach into a two trips chain and activity scheduling model. Preferences are represented as marginal activity utility functions that take scheduling flexibility into account. We analytically derive trip timing optimality conditions, the value of travel time and schedule adjustments in response to travel time increases. We show how the single trip models are special cases of the present model and can be generalized to a setting with trip chains and flexible scheduling. We investigate numerically how the delay cost depends on the delay duration and its distribution on different trips during the day, the accuracy of delay prediction and travel information, and the scheduling flexibility of work hours. The extension of the model framework to more complex schedules is discussed.  相似文献   

19.
Predicting the duration of traffic incidents sequentially during the incident clearance period is helpful in deploying efficient measures and minimizing traffic congestion related to such incidents. This study proposes a competing risk mixture hazard-based model to analyze the effect of various factors on traffic incident duration and predict the duration sequentially. First, topic modeling, a text analysis technique, is used to process the textual features of the traffic incident to extract time-dependent topics. Given four specific clearance methods and the uncertainty of these methods when used during traffic incidents, the proposed mixture model uses the multinomial logistic model and parametric hazard-based model to assess the influence of covariates on the probability of clearance methods and on the duration of the incident. Subsequently, the performance of estimated mixture model in sequentially predicting the incident duration is compared with that of the non-mixture model. The prediction results show that the presented mixture model outperforms the non-mixture model.  相似文献   

20.
Mobile communication instruments have made detecting traffic incidents possible by using floating traffic data. This paper studies the properties of traffic flow dynamics during incidents and proposes incident detection methods using floating data collected by probe vehicles equipped with on-board global positioning system (GPS) equipment. The proposed algorithms predict the time and location of traffic congestion caused by an incident. The detection rate and false rate of the models are examined using a traffic flow simulator, and the performance measures of the proposed methods are compared with those of previous methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号