首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Battery Electric vehicles (BEVs) shift pollution off the road and to potentially less damaging and more varied sources than petroleum. Depending on the source of electricity, a transition to electrified personal transportation can dramatically reduce greenhouse gas emissions and air pollutants. However current EVs tend to be more expensive and have shorter range, which can hinder public adoption. Government incentives can be used to alleviate these factors and encourage adoption. Norway has a long history incentivizing BEV adoption including measures such as exemption from roadway tolls, access to charging infrastructure, point of sale tax incentives, and usage of public bus use limited lanes. This paper analyzed the sales of electric vehicles on a regional and municipal basis in Norway and then cross analyzed these with the corresponding local demographic data and incentive measures to attempt to ascertain which factors lead to higher BEV adoption. It was concluded that access to BEV charging infrastructure, being adjacent to major cities, and regional incomes had the greatest predictive power for the growth of BEV sales. It was also concluded that short-range vehicles showed somewhat more income and unemployment sensitivity than long-range vehicles. Toll exemptions and the right to use bus designated lanes do not seem to have statistically significant predictive power for BEV sales in our linear municipal-level models, but this could be due to neighboring major cities containing those incentive features.  相似文献   

2.
Norway has become a global forerunner in the field of electromobility and the BEV market share is far higher than in any other country. One likely reason for this is strong incentives for promoting purchase and ownership of BEVs. The purpose of this study is to describe the role of incentives for promoting BEVs, and to determine what incentives are critical for deciding to buy a BEV and what groups of buyers respond to different types of incentives. The questions are answered with data from a survey among nearly 3400 BEV owners in Norway.Exemptions from purchase tax and VAT are critical incentives for more than 80% of the respondents. This is very much in line with previous research, which suggests that up-front price reduction is the most powerful incentive in promoting EV adoption. To a substantial number of BEV owners, however, exemption from road tolling or bus lane access is the only decisive factor.Analyses show that there are clear delineations between incentive groups, both in terms of age, gender, and education. Income is a less prominent predictor, which probably results from the competitive price of BEVs in the Norwegian market. Perhaps most interesting is the assumed relation between incentives and character of transport systems the respondents engage in.  相似文献   

3.
To accelerate the diffusion of battery electric vehicles (BEVs), consumer preferences for different products and policy attributes must be determined. Although previous studies have investigated consumer preferences for some product attributes, including purchase price, operation cost, driving range, and charging time, limited studies have discussed the broader aspects of product attributes, such as battery warranty and depreciation rate. Moreover, market-oriented incentives, including the personal carbon trading (PCT) scheme and the tradable driving credits (TDC) scheme, can theoretically be effective alternatives to expensive purchase subsidies. However, there is a lack of empirical evidence that confirms the influence of these two schemes on BEV adoption. To fill these gaps, we conducted a stated preference choice experimental survey in China and investigated the effect of product attributes, existing policy incentives, and two emerging market-oriented incentives on BEV adoption. Our results reveal that along with the main product attributes, battery warranty has a significant positive effect on inducing mainstream consumers to adopt BEVs while no preference difference occurs among existing policy incentives after purchase subsidies are abolished. For young consumers, almost all incentives that reduce the operation cost (e.g., PCT) or increase convenience (e.g., TDC) can increase their adoption of BEVs. These findings can provide important implications for the government with regard to designing novel incentives and promoting BEV adoption.  相似文献   

4.
Electric vehicles (EVs) were recently reintroduced to the global car market. These are an improvement over their predecessors in performance and electric driving range. Although the uptake of EVs has been notable in a short period of time, most government goals for adoption have not been met. This paper reviews a growing body of peer-reviewed literature assessing factors affecting EV adoption. Several important gaps in knowledge are identified. First, there is mixed evidence of the effectiveness of government incentives in encouraging EV uptake and particularly little knowledge in regards to issues of timing and magnitude. The literature shows that public charging infrastructure is an important factor associated with EV uptake, though the direction of causality is yet unclear. Public charging infrastructure can ease range anxiety, particularly for battery electric vehicles, but there is little guidance as to the way in which government should best go about ensuring the provision of infrastructure. Lastly, the nascent EV market means that studies primarily rely on surveys about hypothetical situations. There is strong evidence that actual purchases are much lower than consumers’ stated preferences. Improving understanding of this “attitude–action” gap is important to better informing studies of EV uptake over time.  相似文献   

5.
This paper investigates the optimal deployment of static and dynamic charging infrastructure considering the interdependency between transportation and power networks. Static infrastructure means plug-in charging stations, while the dynamic counterpart refers to electrified roads or charging lanes enabled by charging-while-driving technology. A network equilibrium model is first developed to capture the interactions among battery electric vehicles’ (BEVs) route choices, charging plans, and the prices of electricity. A mixed-integer bi-level program is then formulated to determine the deployment plan of charging infrastructure to minimize the total social cost of the coupled networks. Numerical examples are provided to demonstrate travel and charging plans of BEV drivers and the competitiveness of static and dynamic charging infrastructure. The numerical results on three networks suggest that (1) for individual BEV drivers, the choice between using charging lanes and charging stations is more sensitive to parameters including value of travel time, service fee markup, and battery size, but less sensitive to the charging rates and travel demand; (2) deploying more charging lanes is favorable for transportation networks with sparser topology while more charging stations can be more preferable for those denser networks.  相似文献   

6.
Battery electric vehicles (BEVs) have been promoted by the government over the last several years, driven by public concern over pollutant emissions from internal combustion engines. However, the conditions related to driving BEVs are not yet satisfactory for many BEV users, as evident from sluggish market growth compared with general market forecasts. Thus, a fundamental aspect of diagnosing the current conditions of BEV operation is to evaluate BEV user satisfaction. This study establishes hypothetical links between potential factors and BEV user satisfaction, and between BEV use satisfaction and intention to repurchase and recommend. The hypothetical links are specified using a partial least squares structural equation model (PLS-SEM) and estimated based on a survey of actual BEV owners (N=160) who had driven BEVs for at least six months. The outcomes of PLS-SEM suggest that seven relations out of nine hypothetical links were statistically significant. In particular, it is noticeable that the intention for cost-saving during operation is a key factor for BEV user satisfaction and that user satisfaction with range and charging has a positive effect on the overall satisfaction of BEV users. Furthermore, those who are satisfied with BEVs have the intention to repurchase and recommend BEVs to others. Because this study was conducted based on actual experience of BEV users, the findings could enhance understanding of the BEV driving environment and, thus, pave the way to provision of better service for BEV users.  相似文献   

7.
Battery-only electric vehicles (BEVs) generally offer better air quality through lowered emissions, along with energy savings and security. The issue of long-duration battery charging makes charging-station placement and design key for BEV adoption rates. This work uses genetic algorithms to identify profit-maximizing station placement and design details, with applications that reflect the costs of installing, operating, and maintaining service equipment, including land acquisition. Fast electric vehicle charging stations (EVCSs) are placed across a congested city's network subject to stochastic demand for charging under a user-equilibrium traffic assignment. BEV users’ station choices consider endogenously determined travel times and on-site charging queues. The model allows for congested-travel and congested-station feedback into travelers’ route choices under elastic demand and BEV owners’ station choices, as well as charging price elasticity for BEV charging users.Boston-network results suggest that EVCSs should locate mostly along major highways, which may be a common finding for other metro settings. If 10% of current EV owners seek to charge en route, a user fee of $6 for a 30-min charging session is not enough for station profitability under a 5-year time horizon in this region. However, $10 per BEV charging delivers a 5-year profit of $0.82 million, and 11 cords across 3 stations are enough to accommodate a near-term charging demand in this Boston-area application. Shorter charging sessions, higher fees, and/or allowing for more cords per site also increase profits generally, everything else constant. Power-grid and station upgrades should keep pace with demand, to maximize profits over time, and avoid on-site congestion.  相似文献   

8.
We model consumer preferences for conventional, hybrid electric, plug-in hybrid electric (PHEV), and battery electric (BEV) vehicle technologies in China and the U.S. using data from choice-based conjoint surveys fielded in 2012–2013 in both countries. We find that with the combined bundle of attributes offered by vehicles available today, gasoline vehicles continue in both countries to be most attractive to consumers, and American respondents have significantly lower relative willingness-to-pay for BEV technology than Chinese respondents. While U.S. and Chinese subsidies are similar, favoring vehicles with larger battery packs, differences in consumer preferences lead to different outcomes. Our results suggest that with or without each country’s 2012–2013 subsidies, Chinese consumers are willing to adopt today’s BEVs and mid-range PHEVs at similar rates relative to their respective gasoline counterparts, whereas American consumers prefer low-range PHEVs despite subsidies. This implies potential for earlier BEV adoption in China, given adequate supply. While there are clear national security benefits for adoption of BEVs in China, the local and global social impact is unclear: With higher electricity generation emissions in China, a transition to BEVs may reduce oil consumption at the expense of increased air pollution and/or greenhouse gas emissions. On the other hand, demand from China could increase global incentives for electric vehicle technology development with the potential to reduce emissions in countries where electricity generation is associated with lower emissions.  相似文献   

9.
The diffusion of electric vehicles (EVs) is studied in a two-sided market framework consisting of EVs on the one side and EV charging stations (EVCSs) on the other. A sequential game is introduced as a model for the interactions between an EVCS investor and EV consumers. A consumer chooses to purchase an EV or a conventional gasoline alternative based on the upfront costs of purchase, the future operating costs, and the availability of charging stations. The investor, on the other hand, maximizes his profit by deciding whether to build charging facilities at a set of potential EVCS sites or to defer his investments.The solution of the sequential game characterizes the EV-EVCS market equilibrium. The market solution is compared with that of a social planner who invests in EVCSs with the goal of maximizing the social welfare. It is shown that the market solution underinvests EVCSs, leading to slower EV diffusion. The effects of subsidies for EV purchase and EVCSs are also considered.  相似文献   

10.
Incentives to buy and use electric vehicles (EVs) may influence individuals’ decisions to do so. To examine these impacts, a latent class discrete choice model is developed to analyse consumer preferences related to EV attributes and related government incentives. Data was collected from a stated preference survey of 1,076 residents of New South Wales (NSW), Australia. According to the results, the proposed latent constructs classify respondents into five segments. The segments are then used to distinguish respondent behaviours regarding EV attributes and related government incentives. The results show that rebate on the upfront cost of an EV is the most preferred one-off financial incentive, because EVs are expected to be expensive, especially in Australia which has a very small EV market at present. Furthermore, rebates on energy bills and parking fees are also well-received, as these things are expensive in Sydney, Australia. Thus, operational incentives for discounts on energy bills and parking fees may facilitate the success of EVs in NSW.  相似文献   

11.
As charging-while-driving (CWD) technology advances, charging lanes can be deployed in the near future to charge electric vehicles (EVs) while in motion. Since charging lanes will be costly to deploy, this paper investigates the deployment of two types of charging facilities, namely charging lanes and charging stations, along a long traffic corridor to explore the competitiveness of charging lanes. Given the charging infrastructure supply, i.e., the number of charging stations, the number of chargers installed at each station, the length of charging lanes, and the charging prices at charging stations and lanes, we analyze the charging-facility-choice equilibrium of EVs. We then discuss the optimal deployment of charging infrastructure considering either the public or private provision. In the former, a government agency builds and operates both charging lanes and stations to minimize social cost, while in the latter, charging lanes and stations are assumed to be built and operated by two competing private companies to maximize their own profits. Numerical experiments based on currently available empirical data suggest that charging lanes are competitive in both cases for attracting drivers and generating revenue.  相似文献   

12.
The majority of previous studies examining life cycle greenhouse gas (LCGHG) emissions of battery electric vehicles (BEVs) have focused on efficiency-oriented vehicle designs with limited battery capacities. However, two dominant trends in the US BEV market make these studies increasingly obsolete: sales show significant increases in battery capacity and attendant range and are increasingly dominated by large luxury or high-performance vehicles. In addition, an era of new use and ownership models may mean significant changes to vehicle utilization, and the carbon intensity of electricity is expected to decrease. Thus, the question is whether these trends significantly alter our expectations of future BEV LCGHG emissions.To answer this question, three archetypal vehicle designs for the year 2025 along with scenarios for increased range and different use models are simulated in an LCGHG model: an efficiency-oriented compact vehicle; a high performance luxury sedan; and a luxury sport utility vehicle. While production emissions are less than 10% of LCGHG emissions for today’s gasoline vehicles, they account for about 40% for a BEV, and as much as two-thirds of a future BEV operated on a primarily renewable grid. Larger battery systems and low utilization do not outweigh expected reductions in emissions from electricity used for vehicle charging. These trends could be exacerbated by increasing BEV market shares for larger vehicles. However, larger battery systems could reduce per-mile emissions of BEVs in high mileage applications, like on-demand ride sharing or shared vehicle fleets, meaning that trends in use patterns may countervail those in BEV design.  相似文献   

13.
This study investigates the energy consumption impact of route selection on battery electric vehicles (BEVs) using empirical second-by-second Global Positioning System (GPS) commute data and traffic micro-simulation data. Drivers typically choose routes that reduce travel time and therefore travel cost. However, BEVs’ limited driving range makes energy efficient route selection of particular concern to BEV drivers. In addition, BEVs’ regenerative braking systems allow for the recovery of energy while braking, which is affected by route choices. State-of-the-art BEV energy consumption models consider a simplified constant regenerative braking energy efficiency or average speed dependent regenerative braking factors. To overcome these limitations, this study adopted a microscopic BEV energy consumption model, which captures the effect of transient behavior on BEV energy consumption and recovery while braking in a congested network. The study found that BEVs and conventional internal combustion engine vehicles (ICEVs) had different fuel/energy-optimized traffic assignments, suggesting that different routings be recommended for electric vehicles. For the specific case study, simulation results indicate that a faster route could actually increase BEV energy consumption, and that significant energy savings were observed when BEVs utilized a longer travel time route because energy is regenerated. Finally, the study found that regenerated energy was greatly affected by facility types and congestion levels and also BEVs’ energy efficiency could be significantly influenced by regenerated energy.  相似文献   

14.
Uptake of electric vehicles (EVs) by consumers could reduce CO2 emissions from light duty road transport, but little is known about how mass-market consumer drivers will respond to them. Self-Congruity theory proposes that products are preferred whose symbolic meanings are congruent with personal identity. Further, Construal Level theory suggests that only those who are psychologically close to a new product category through direct experience with it can make concrete construals related to their lifestyles; most drivers lack this for EVs. For instance, potential performance benefits of EVs might offset range limitations for consumers who have such direct experience. The effect of direct experience was tested in a randomised controlled trial with 393 mass-market consumer drivers. An experimental group were given direct experience of a modern battery electric vehicle (BEV), and a control group an equivalent conventional car. Despite rating the performance of the BEV more highly than that of the conventional car, willingness to consider a BEV declined after experience, particularly if the range of the BEV considered was short. The participants willing to consider a short-range BEV were those high in self-congruity, for whom the BEV could act as a strong symbol of personal identity.  相似文献   

15.
Electric vehicles (EVs) have noteworthy potential to reduce global and local emissions and are expected to become a relevant future market for vehicle sales. Both policy makers and car manufacturers have an interest to understand the first large EV user group, frequently referred to as ‘early adopters’. However, there are only a few empirical results available for this important group. In this paper, we analyse and discuss several empirical data sets from Germany, characterising this user group from both a user and a product perspective, i.e. who is willing to buy an EV and who should buy one. Our results show that the most likely group of private EV buyers in Germany are middle-aged men with technical professions living in rural or suburban multi-person households. They own a large share of vehicles in general, are more likely to profit from the economical benefits of these vehicles due to their annual vehicle kilometres travelled and the share of inner-city driving. They state a higher willingness to buy electric vehicles than other potential adopter groups and their higher socio-economic status allows them to purchase EVs. In contrast to this, inhabitants of major cities are less likely to buy EVs since they form a small group of car owners in general, their mileage is too low for EVs to pay off economically and they state lower interest and lower willingness to pay for EVs than other groups. Our results indicate that transport policy promoting EVs should focus on middle-aged men with families from rural and sub-urban cities as first private EV buyers.  相似文献   

16.
Electric vehicles (EVs) are promising alternative to conventional vehicles, due to their low fuel cost and low emissions. As a subset of EVs, plug-in hybrid electric vehicles (PHEVs) backup batteries with combustion engines, and thus have a longer traveling range than battery electric vehicles (BEVs). However, the energy cost of a PHEV is higher than a BEV because the gasoline price is higher than the electricity price. Hence, choosing a route with more charging opportunities may result in less fuel cost than the shortest route. Different with the traditional shortest-path and shortest-time routing methods, we propose a new routing choice with the lowest fuel cost for PHEV drivers. Existing algorithms for gasoline vehicles cannot be applied because they never considered the regenerative braking which may result in negative energy consumption on some road segments. Existing algorithms for BEVs are not competent too because PHEVs have two power sources. Thus, even if along the same route, different options of power source will lead to different energy consumption. This paper proposes a cost-optimal algorithm (COA) to deal with the challenges. The proposed algorithm is evaluated using real-world maps and data. The results show that there is a trade-off between traveling cost and time consumed when driving PHEVs. It is also observed that the average detour rate caused by COA is less than 14%. Significantly, the algorithm averagely saves more than 48% energy cost compared to the shortest-time routing.  相似文献   

17.
The spread of electric vehicles (EVs) and their increasing demand for electricity has placed a greater burden on electricity generation and the power grid. In particular, the problem of whether to expand the electricity power stations and distribution facilities due to the construction of EV charging stations is emerging as an immediate issue. To effectively meet the demand for additional electricity while ensuring the stability of the power grid, there is a need to accurately predict the charging demands for EVs. Therefore, this study estimates the changes in electricity charging demand based on consumer preferences for EVs, charging time of day, and types of electric vehicle supply equipment (EVSE) and elucidates the matters to be considered for constructing EV infrastructure. The results show that consumers mainly preferred charging during the evening. However, when we considered different types of EVSEs (public and private) in the analysis, people preferred to charge at public EVSEs during the day. During peak load time, people tended to prefer charging using fast public EVSEs, which shows that consumers considered the tradeoffs between the full charge time and the price for charging. Based on these findings, this study provides key political implications for policy makers to consider in taking preemptive measures to adjust the electricity supply infrastructure.  相似文献   

18.
The major barriers to a more widespread introduction of battery electric vehicles (BEVs) beyond early adopters are the limited range, charging limitations, and costly batteries. An important question is therefore where these effects can be most effectively mitigated. An optimization model is developed to estimate the potential for BEVs to replace one of the conventional cars in two-car households and to viably contribute to the households’ driving demand. It uses data from 1 to 3 months of simultaneous GPS logging of the movement patterns for both cars in 64 commuting Swedish two-car households in the Gothenburg region.The results show that, for home charging only, a flexible vehicle use strategy can considerably increase BEV driving and nearly eliminate the unfulfilled driving in the household due to the range and charging limitations with a small battery. The present value of this flexibility is estimated to be on average $6000–$7000 but varies considerably between households. With possible near-future prices for BEVs based on mass production cost estimates, this flexibility makes the total cost of ownership (TCO) for a BEV advantageous in almost all the investigated households compared to a conventional vehicle or a hybrid electric vehicle. Because of the ubiquity of multi-car households in developed economies, these families could be ideal candidates for the initial efforts to enhance BEV adoptions beyond the early adopters. The results of this research can inform the design and marketing of cheaper BEVs with small but enough range and contribute to increased knowledge and awareness of the suitability of BEVs in such households.  相似文献   

19.
Research that addresses policy measures to increase the adoption of electric vehicles (EVs) has discussed government regulations such as California’s Zero Emission Vehicle (ZEV) or penalties on petroleum-based fuels. Relatively few articles have addressed policy measures designed to increase the adoption of EVs by incentives to influence car buyers’ voluntary behavior. This article examines the effects of such policy measures. Two of these attributes are monetary measures, two others are traffic regulations, and the other three are related to investments in charging infrastructure. Consumer preferences were assessed using a choice-based conjoint analysis on an individual basis by applying the hierarchical Bayes method. In addition, the Kano method was used to elicit consumer satisfaction. This not only enabled the identification of preferences but also why preferences were based on either features that were “must-haves” or on attributes that were not expected but were highly attractive and, thus, led to high satisfaction. The results of surveys conducted in 20 countries in 5 continents showed that the installation of a charging network on freeways is an absolute necessity. This was completely independent from the average mileage driven per day. High cash grants were appreciated as attractive; however, combinations of lower grants with charging facilities resulted in similar preference shares in market simulations for each country. The results may serve as initial guidance for policymakers and practitioners in improving their incentive programs for electric mobility.  相似文献   

20.
Commercial vehicle fleets constitute a favourable entry for plug-in electric vehicles (PEVs) into the road transport system. During an extensive demonstration project, with 500 PEVs operating in 100 public and private enterprises, 40 battery electric vehicle (BEV) users were invited to focus group discussions. The focus groups allowed the users to discuss their actual experiences of operating BEVs and thereby provide a greater understanding of the operating conditions experienced by BEV users in different organisations. Based on the discussions, this paper focus on operational barriers, rather than traditional technical or economical barriers. The findings complemented earlier data collected from the demonstration project and further explained the recorded driving and charging behaviour. The conditions to adopt the BEVs vary between the users, and this in turn can relate to organisational conditions. Given a favourable introduction, users adopt and accept the technology. The paper contributes with new findings regarding implementation of BEVs in commercial vehicle fleets and provides an in-depth understanding of the operational barriers that public or private enterprises face when introducing BEVs in their vehicle fleets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号