首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
In this paper, we study two closely related airline planning problems: the robust weekly aircraft maintenance routing problem (RWAMRP) and the tail assignment problem (TAP). In real life operations, the RWAMRP solution is used in tactical planning whereas the TAP solution is implemented in operational planning. The main objective of these two problems is to minimize the total expected propagated delay (EPD) of the aircraft routes. To formulate the RWAMRP, we propose a novel weekly line-of-flights (LOF) network model that can handle complex and nonlinear cost functions of EPD. Because the number of LOFs grows exponentially with the number of flights to be scheduled, we propose a two-stage column generation approach to efficiently solve large-scale real-life RWAMRPs. Because the EPD of an LOF is highly nonlinear and can be very time-consuming to accurately compute, we propose three lower bounds on the EPD to solve the pricing subproblem of the column generation. Our approach is tested on eight real-life test instances. The computational results show that the proposed approach provides very tight LP relaxation (within 0.6% of optimal solutions) and solves the test case with more than 6000 flights per week in less than three hours. We also investigate the solutions obtained by our approach over 500 simulated realizations. The simulation results demonstrate that, in all eight test instances, our solutions result in less EPDs than those obtained from traditional methods. We then extend our model and solution approach to solve realistically simulated TAP instances.  相似文献   

2.
The Electric Vehicle Routing Problem with Time Windows (EVRPTW) is an extension to the well-known Vehicle Routing Problem with Time Windows (VRPTW) where the fleet consists of electric vehicles (EVs). Since EVs have limited driving range due to their battery capacities they may need to visit recharging stations while servicing the customers along their route. The recharging may take place at any battery level and after the recharging the battery is assumed to be full. In this paper, we relax the full recharge restriction and allow partial recharging (EVRPTW-PR), which is more practical in the real world due to shorter recharging duration. We formulate this problem as a 0–1 mixed integer linear program and develop an Adaptive Large Neighborhood Search (ALNS) algorithm to solve it efficiently. We apply several removal and insertion mechanisms by selecting them dynamically and adaptively based on their past performances, including new mechanisms specifically designed for EVRPTW and EVRPTW-PR. These new mechanisms include the removal of the stations independently or along with the preceding or succeeding customers and the insertion of the stations with determining the charge amount based on the recharging decisions. We test the performance of ALNS by using benchmark instances from the recent literature. The computational results show that the proposed method is effective in finding high quality solutions and the partial recharging option may significantly improve the routing decisions.  相似文献   

3.
We address the robust weekly aircraft routing and retiming problem, which requires determining weekly schedules for a heterogeneous fleet that maximizes the aircraft on-time performance, minimizes the total delay, and minimizes the number of delayed passengers. The fleet is required to serve a set of flights having known departure time windows while satisfying maintenance constraints. All flights are subject to random delays that may propagate through the network. We propose to solve this problem using a hybrid optimization-simulation approach based on a novel mixed-integer nonlinear programming model for the robust weekly aircraft maintenance routing problem. For this model, we provide an equivalent mixed-integer linear programming formulation that can be solved using a commercial solver. Furthermore, we describe a Monte-Carlo-based procedure for sequentially adjusting the flight departure times. We perform an extensive computational study using instances obtained from a major international airline, having up to 3387 flights and 164 aircraft, which demonstrates the efficacy of the proposed approach. Using the simulation software SimAir to assess the robustness of the solutions produced by our approach in comparison with that for the original solutions implemented by the airline, we found that on-time performance was improved by 9.8–16.0%, cumulative delay was reduced by 25.4–33.1%, and the number of delayed passengers was reduced by 8.2–51.6%.  相似文献   

4.
As liquefied natural gas (LNG) steadily grows to be a common mode for commercializing natural gas, LNG supply chain optimization is becoming a key technology for gas companies to maintain competitiveness. This paper develops methods for improving the solutions for a previously stated form of an LNG inventory routing problem (LNG-IRP). Motivated by the poor performance of a Dantzig-Wolfe-based decomposition approach for exact solutions, we develop a suite of advanced heuristic techniques and propose a hybrid heuristic strategy aiming to achieve improved solutions in shorter computational time. The heuristics include two phases: the advanced construction phase is based on a rolling time algorithm and a greedy randomized adaptive search procedure (GRASP); and the solution improvement phase is a series of novel MIP-based neighborhood search techniques. The proposed algorithms are evaluated based on a set of realistic large-scale instances seen in recent literature. Extensive computational results indicate that the hybrid heuristic strategy is able to obtain optimal or near optimal feasible solutions substantially faster than commercial optimization software and also the previously proposed heuristic methods.  相似文献   

5.
The flight schedule of an airline is the primary factor in finding the most effective and efficient deployment of the airline's resources. The flight schedule process aims at finding a set of routes with associated aircraft type, frequency of service and times of departures and arrivals in order to satisfy a specific objective such as profit maximization. In this paper, we develop a two‐phase heuristic model for airline frequency planning and aircraft routing for small size airlines. The first phase develops a frequency plan using an economic equilibrium model between passenger demand for flying a particular route and aircraft operating characteristics. The second phase uses a time‐of‐day model to develop an assignment algorithm for aircraft routing.  相似文献   

6.
The delivery service provided by large-scale retailers continues to grow as online sales occupy an increasingly large share of the market. This study aims to tease out efficient vehicle scheduling times as well as optimal delivery routes by applying meta-heuristic algorithms. Monthly data on existing routes were obtained from a branch of Korea’s leading large-scale online retailer. The first task was to examine the status of existing routes by comparing delivery routes created using Dijkstra’s algorithm with existing delivery routes and their vehicle scheduling. The second task was to identify optimal delivery routes through a comparative analysis of the genetic algorithm and Tabu search algorithm, known for its superior applicability amongst other meta-heuristic algorithms. These findings demonstrate that the optimal vehicle routing problem not only has the potential to reduce distribution costs for operators and expedite delivery for consumers, but also the added social benefit of reduced carbon emissions.  相似文献   

7.
This paper presents the first local search heuristic for the coupled runway sequencing (arrival & departure) and taxiway routing problems, based on the receding horizon (RH) scheme that takes into account the dynamic nature of the problem. As test case, we use Manchester Airport, the third busiest airport in the UK. From the ground movement perspective, the airport layout requires that departing aircraft taxi across the arrivals runway. This makes it impossible to separate arrival from departure sequencing in practice. Operationally, interactions between aircraft on the taxiways could prevent aircraft from taking off from, or landing on, runways during the slots assigned to them by an algorithm optimizing runway use alone. We thus consider the interactions between arrival and departure aircraft on the airport surface. Compared to sequentially optimized solutions, the results obtained with our approach indicate a significant decrease in the taxiway routing delay, with generally no loss in performance in terms of the sequencing delay for a regular day of operations. Another benefit of such a simultaneous optimization approach is the possibility of holding aircraft at the stands for longer, without the engines running. This significantly reduces the fuel burn, as well as bottlenecks and traffic congestion during peak hours that are often the cause of flight delays due to the limited amount of airport surface space available. Given that the maximum computing time per horizon is around 95 s, real-time operation might be practical with increased computing power.  相似文献   

8.
The vehicle routing problem (VRP) is a critical and vital problem in logistics for the design of an effective and efficient transportation network, within which the capacitated vehicle routing problem (CVRP) has been widely studied for several decades due to the practical relevance of logistics operation. However, CVRP with the objectives of minimizing the overall traveling distance or the traveling time cannot meet the latest requirements of green logistics, which concern more about the influence on the environment. This paper studies CVRP from an environmental perspective and introduces a new model called environmental vehicle routing problem (EVRP) with the aim of reducing the adverse effect on the environment caused by the routing of vehicles. In this research, the environmental influence is measured through the amount of the emission carbon dioxide, which is a widely acknowledged criteria and accounts for the major influence on environment. A hybrid artificial bee colony algorithm (ABC) is designed to solve the EVRP model, and the performance of the hybrid algorithm is evaluated through comparing with well-known CVRP instances. The computational results from numerical experiments suggest that the hybrid ABC algorithm outperforms the original ABC algorithm by 5% on average. The transformation from CVRP to EVRP can be recognized through the differentiation of their corresponding optimal solutions, which provides practical insights for operation management in green logistics.  相似文献   

9.
The traditional distribution planning problem in a supply chain has often been studied mainly with a focus on economic benefits. The growing concern about the effects of anthropogenic pollutions has forced researchers and supply chain practitioners to address the socio-environmental concerns. This research study focuses on incorporating the environmental impact on route design problem. In this work, the aim is to integrate both the objectives, namely economic cost and emission cost reduction for a capacitated multi-depot green vehicle routing problem. The proposed models are a significant contribution to the field of research in green vehicle routing problem at the operational level. The formulated integer linear programming model is solved for a set of small scale instances using LINGO solver. A computationally efficient Ant Colony Optimization (ACO) based meta-heuristic is developed for solving both small scale and large scale problem instances in reasonable amount of time. For solving large scale instances, the performance of the proposed ACO based meta-heuristic is improved by integrating it with a variable neighbourhood search.  相似文献   

10.
This paper introduces a bidirectional multi-shift full truckload transportation problem with operation dependent service times. The problem is different from the previous container transport problems and the existing approaches for container transport problems and vehicle routing pickup and delivery are either not suitable or inefficient. In this paper, a set covering model is developed for the problem based on a novel route representation and a container-flow mapping. It was demonstrated that the model can be applied to solve real-life, medium sized instances of the container transport problem at a large international port. A lower bound of the problem is also obtained by relaxing the time window constraints to the nearest shifts and transforming the problem into a service network design problem. Implications and managerial insights of the results by the lower bound results are also provided.  相似文献   

11.
Vehicle routing problems (VRPs) whose typical objective is to minimise total travel costs over a tour have evolved over the years with objectives ranging from minimising travel times and distances to minimising pollution and fuel consumption. However, driver behaviour continues to be neglected while planning for vehicle routes. Factors such as traffic congestion levels, monotonous drives and fatigue have an impact on the behaviour of drivers, which in turn might affect their speed-choice and route-choice behaviours. The behaviour of drivers and their subsequent decision-making owing to these factors impact the revenue of transport companies and could lead to huge losses in extreme cases. There have been studies on the behaviour of drivers in isolation, without inclusion of the objectives and constraints of the traditional routing problem. This paper presents a review of existing models of VRP, planner behaviour models in the VRP context and driver behaviour models and provides a motivation to integrate these models in a stochastic traffic environment to produce practical, economic and driver-friendly logistics solutions. The paper provides valuable insights on the relevance of behavioural issues in logistics and highlights the modelling implications of incorporating planner and driver behaviour in the framework of routing problems.  相似文献   

12.
This paper presents a differential evolution algorithm (DEA) to solve a vehicle routing problem with backhauls and time windows (VRPBTW) and applied for a catering firm. VRPBTW is an extension of the vehicle routing problem, which includes capacity and time window constraints. In this problem, customers are divided into two subsets: linehaul and backhaul. Each vehicle starts from a depot and goods are delivered from the depot to the linehaul customers. Goods are subsequently brought back to the depot from the backhaul customers. The objective is to minimize the total distance that satisfies all of the constraints. The problem is formulated using mixed integer programming and solved using DEA. Proposed algorithm is tested with several benchmark problems to demonstrate effectiveness and efficiency of the algorithm and results show that our proposed algorithm can find superior solutions for most of the problems in comparison with the best known solutions. Hence, DEA was carried out for catering firm to minimize total transportation costs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The consideration of pollution in routing decisions gives rise to a new routing framework where measures of the environmental implications are traded off with business performance measures. To address this type of routing decisions, we formulate and solve a bi-objective time, load and path-dependent vehicle routing problem with time windows (BTL-VRPTW). The proposed formulation incorporates a travel time model representing realistically time varying traffic conditions. A key feature of the problem under consideration is the need to address simultaneously routing and path finding decisions. To cope with the computational burden arising from this property of the problem we propose a network reduction approach. Computational tests on the effect of the network reduction approach on determining non-dominated solutions are reported. A generic solution framework is proposed to address the BTL-VRPTW. The proposed framework combines any technique that creates capacity-feasible routes with a routing and scheduling method that aims to convert the identified routes to problem solutions. We show that transforming a set of routes to BTL-VRPTW solutions is equivalent to solving a bi-objective time dependent shortest path problem on a specially structured graph. We propose a backward label setting technique to solve the emerging problem that takes advantage of the special structure of the graph. The proposed generic solution framework is implemented by integrating the routing and scheduling method into an Ant Colony System algorithm. The accuracy of the proposed algorithm was assessed on the basis of its capability to determine minimum travel time and fuel consumption solutions. Although the computational results are encouraging, there is ample room for future research in algorithmic advances on addressing the proposed problem.  相似文献   

14.
This paper deals with a practical tramp ship routing problem while taking into account different bunker prices at different ports, which is called the joint tramp ship routing and bunkering (JSRB) problem. Given a set of cargoes to be transported and a set of ports with different bunker prices, the proposed problem determines how to route ships to carry the cargoes and the amount of bunker to purchase at each port, in order to maximize the total profit. After building an integer linear programming model for the JSRB problem, we propose a tailored branch-and-price (B&P) solution approach. The B&P approach incorporates an efficient method for obtaining the optimal bunkering policy and a novel dominance rule for detecting inefficient routing options. The B&P approach is tested with randomly generated large-scale instances derived from real-world planning problems. All of the instances can be solved efficiently. Moreover, the proposed approach for the JSRB problem outperforms the conventional sequential planning approach and can incorporate the prediction of future cargo demand to avoid making myopic decisions.  相似文献   

15.
Most previous work in addressing the adaptive routing problem in stochastic and time-dependent (STD) network has been focusing on developing parametric models to reflect the network dynamics and designing efficient algorithms to solve these models. However, strong assumptions need to be made in the models and some algorithms also suffer from the curse of dimensionality. In this paper, we examine the application of Reinforcement Learning as a non-parametric model-free method to solve the problem. Both the online Q learning method for discrete state space and the offline fitted Q iteration algorithm for continuous state space are discussed. With a small case study on a mid-sized network, we demonstrate the significant advantages of using Reinforcement Learning to solve for the optimal routing policy over traditional stochastic dynamic programming method. And the fitted Q iteration algorithm combined with tree-based function approximation is shown to outperform other methods especially during peak demand periods.  相似文献   

16.
A heuristic for the train pathing and timetabling problem   总被引:5,自引:0,他引:5  
In a railroad system, train pathing is concerned with the assignment of trains to links and tracks, and train timetabling allocates time slots to trains. These important tasks were traditionally done manually, but there is an increasing move toward automated software based on mathematical models and algorithms. Most published models in the literature either focus on train timetabling only, or are too complicated to solve when facing large instances. In this paper, we present an optimization heuristic that includes both train pathing and train timetabling, and has the ability to solve real-sized instances. This heuristic allows the operation time of trains to depend on the assigned track, and also lets the minimum headway between the trains to depend on the trains’ relative status. It generates an initial solution with a simple rule, and then uses a four-step process to derive the solution iteratively. Each iteration starts by altering the order the trains travel between stations, then it assigns the services to the tracks in the stations with a binary integer program, determines the order they pass through the stations with a linear program, and uses another linear program to produce a timetable. After these four steps, the heuristic accepts or rejects the new solution according to a Threshold Accepting rule. By decomposing the original complex problem into four parts, and by attacking each part with simpler neighborhood-search processes or mathematical programs, the heuristic is able to solve realistic instances. When tested with two real-world examples, one from a 159.3 km, 29-station railroad that offers 44 daily services, and another from a 345 km, eight-station high-speed rail with 128 services, the heuristic obtained timetables that are at least as good as real schedules.  相似文献   

17.
An emerging task in catering services for high-speed railways (CSHR) is to design a distribution system for the delivery of high-quality perishable food products to trains in need. This paper proposes a novel model for integrating location decision making with daily rail catering operations, which are affected by various aspects of rail planning, to meet time-sensitive passenger demands. A three-echelon location routing problem with time windows and time budget constraints (3E-LRPTWTBC) is thus proposed toward formulating this integrated distribution system design problem. This model attempts to determine the capacities/locations of distribution centers and to optimize the number of meals delivered to stations. The model also attempts to generate a schedule for refrigerated cars traveling from distribution centers to rail stations for train loading whereby meals can be catered to trains within tight time windows and sold before a specified time deadline. By relaxing the time-window constraints, a relaxation model that can be solved using an off-the-shelf mixed integer programming (MIP) solver is obtained to provide a lower bound on the 3E-LRPTWTBC. A hybrid cross entropy algorithm (HCEA) is proposed to solve the 3E-LRPTWTBC. A small-scale case study is implemented, which reveals a 9.3% gap between the solution obtained using the HCEA and that obtained using the relaxation model (RM). A comparative analysis of the HCEA and an exhaustive enumeration algorithm indicates that the HCEA shows good performance in terms of computation time. Finally, a case study considering 156 trains on the Beijing-Shanghai high-speed corridor and a large-scale case study considering 1130 trains on the Chinese railway network are addressed in a comprehensive study to demonstrate the applicability of the proposed models and algorithm.  相似文献   

18.
The purpose of this paper to present a cooperative scheduling algorithm for solving the Dynamic Pickup and Delivery Problem with Time Windows (DPDPTW). The idea behind cooperative waiting strategies is to calculate simultaneously the waiting times for all nodes in the solution. Classical non‐cooperative scheduling algorithms perform the scheduling for each route independently of the scheduling of the other routes. We present the Cooperative Scheduling Problem (CSP) based on the elliptical areas generated by vehicles waiting at their nodes. The CSP is solved by means of a genetic algorithm and is evaluated by using a set of benchmarks based on real‐life data found in the literature. Initially, two waiting strategies are presented: Wait‐Early‐Time scheduling and Balanced‐Departure scheduling. Extensive empirical simulations have been carried out by analyzing the degree of dynamism and the average waiting time, a new concept defined to take into account the gap between the time windows of pickup and delivery nodes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Every aircraft, military or civilian, must be grounded for maintenance after it has completed a certain number of flight hours since its last maintenance check. In this paper, we address the problem of deciding which available aircraft should fly and for how long, and which grounded aircraft should perform maintenance operations, in a group of aircraft that comprise a combat unit. The objective is to achieve maximum availability of the unit over the planning horizon. We develop a multiobjective optimization model for this problem, and we illustrate its application and solution on a real life instance drawn from the Hellenic Air Force. We also propose two heuristic approaches for solving large scale instances of the problem. We conclude with a discussion that gives insight into the behavior of the model and of the heuristics, based on the analysis of the results obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号