首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Road crashes are a leading cause of death and serious injuries both developed and developing countries. Intersections are recognized as being among the most hazardous locations on the roads. Although crashes at intersections form about 35 % of the reported accidents account for about 32% of traffic‐related serious injuries and fatalities in Singapore, there is no known study that examines the factors contributing to the severity of these crashes. In this study, the ordinal probit model was applied to crash data from 1992 to 2002 to investigate the role a variety of factors play in determining the severity of intersection crashes. Our study shows that vehicle type, road type, collision type, driver's characteristics and time of day are important determinants of the severity of crashes at intersections in Singapore.  相似文献   

2.
Conventional fixed-route bus services are generally preferred to flexible-route services at high demand densities, and vice versa. This paper formulates the problem of integrating conventional and flexible services that connect a main terminal to multiple local regions over multiple time periods. The system’s vehicle size, route spacing (for conventional services), service area (for flexible services), headways and fleet sizes are jointly optimized to minimize the sum of supplier costs and user costs. The route spacing for conventional bus services and service area for flexible bus services are also optimized for each region. The proposed solution method, which uses a genetic algorithm and analytic optimization, finds good solutions quickly. Numerical examples and sensitivity analyses confirm that the single fleet variable-type bus service may outperform either the single fleet conventional bus service or the single fleet flexible bus service when demand densities vary substantially among regions and time periods.  相似文献   

3.
The objective of this research is to identify the factors differentiating between single heavy vehicle collisions at intersections and midblocks by using a binary logit model. Our results show that single vehicle crashes involving heavy vehicle at intersections are more likely to occur on main roads and highways, whereas crashes at midblocks are more likely to occur on divided two‐way roads, roads with special facilities or features (e.g. bridge) and roads with a higher percentage of heavy vehicle traffic. Intersection crashes are also more likely to involve vehicles that are turning left or right, resulting in angle crashes and vehicle overturn, whereas midblock crashes are more likely to involve vehicles on higher posted speed roads. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.

Fleet operators rely on forecasts of future user requests to reposition empty vehicles and efficiently operate their vehicle fleets. In the context of an on-demand shared-use autonomous vehicle (AV) mobility service (SAMS), this study analyzes the trade-off that arises when selecting a spatio-temporal demand forecast aggregation level to support the operation of a SAMS fleet. In general, when short-term forecasts of user requests are intended for a finer space–time discretization, they tend to become less reliable. However, holding reliability constant, more disaggregate forecasts provide more valuable information to fleet operators. To explore this trade-off, this study presents a flexible methodological framework to evaluate and quantify the impact of spatio-temporal demand forecast aggregation on the operational efficiency of a SAMS fleet. At the core of the methodological framework is an agent-based simulation that requires a demand forecasting method and a SAMS fleet operational strategy. This study employs an offline demand forecasting method, and an online joint AV-user assignment and empty AV repositioning strategy. Using this forecasting method and fleet operational strategy, as well as Manhattan, NY taxi data, this study simulates the operations of a SAMS fleet across various spatio-temporal aggregation levels. Results indicate that as demand forecasts (and subregions) become more spatially disaggregate, fleet performance improves, in terms of user wait time and empty fleet miles. This finding comes despite demand forecast quality decreasing as subregions become more spatially disaggregate. Additionally, results indicate the SAMS fleet significantly benefits from higher quality demand forecasts, especially at more disaggregate levels.

  相似文献   

5.
The primary objective of this study was to evaluate the risks of crashes associated with the freeway traffic flow operating at various levels of service (LOS) and to identify crash-prone traffic conditions for each LOS. The results showed that the traffic flow operating at LOS E had the highest crash potential, followed by LOS F and D. The traffic flow operating at LOS B and A had the lowest crash potential. For LOS A and B, the vehicle platoon and abrupt change in vehicle speeds were major contributing factors to crash occurrences. For LOS C, crash risks were correlated with lane-change maneuvers, speed variation, and small headways in traffic. For LOS D, crash risks increased with an increase in the temporal change in traffic flow variables and the frequency of lane-change maneuvers. For LOS E, crash risks were mainly affected by high traffic volumes and oscillating traffic conditions. For LOS F, crash risks increased with an increase in the standard deviation of flow rate and the frequency of lane-change maneuvers. The findings suggested that the mechanism of crashes were quite different across various LOS. A Bayesian random-parameters logistic regression model was developed to identify crash-prone traffic conditions for various LOS. The proposed model significantly improved the prediction performance as compared to the conventional logistic regression model.  相似文献   

6.
The present study intended to (1) investigate the injury risk of pedestrian casualties involved in traffic crashes at signalized intersections in Hong Kong; (2) determine the effect of pedestrian volumes on the severity levels of pedestrian injuries; and (3) explore the role of spatial correlation in econometric crash‐severity models. The data from 1889 pedestrian‐related crashes at 318 signalized intersections between 2008 and 2012 were elaborately collected from the Traffic Accident Database System maintained by the Hong Kong Transport Department. To account for the cross‐intersection heterogeneity, a Bayesian hierarchical logit model with uncorrelated and spatially correlated random effects was developed. An intrinsic conditional autoregressive prior was specified for the spatial correlation term. Results revealed that (1) signalized intersections with greater pedestrian volumes generally exhibited a lower injury risk; (2) ignoring the spatial correlation potentially results in reduced model goodness‐of‐fit, an underestimation of variability and standard error of parameter estimates, as well as inconsistent, biased, and erroneous inference; (3) special attention should be paid to the following factors, which led to a significantly higher probability of pedestrians being killed or sustaining severe injury: pedestrian age greater than 65 years, casualties with head injuries, crashes that occurred on footpaths that were not obstructed/overcrowded, heedless or inattentive crossing, crashes on the two‐way carriageway, and those that occurred near tram or light‐rail transit stops. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
This paper considers the maritime container assignment problem in a market setting with two competing firms. Given a series of known, exogenous demands for service between pairs of ports, each company is free to design liner services connecting a subset of the ports and demand, subject to the size of their fleets and the potential for profit. The model is designed as a three-stage complete information game: in the first stage, the firms simultaneously invest in their fleet; in the second stage, they individually design their services and solve the route assignment problem with respect to the transport demand they expect to serve, given the fleet determined in the first stage; in the final stage, the firms compete in terms of freight rates on each origin–destination movement. The game is solved by backward induction. Numerical solutions are provided to characterize the equilibria of the game.  相似文献   

8.
One interaction between environmental and safety goals in transport is found within the vehicle fleet where fuel economy and secondary safety performance of individual vehicles impose conflicting requirements on vehicle mass from an individual’s perspective. Fleet characteristics influence the relationship between the environmental and safety outcomes of the fleet; the topic of this paper. Cross-sectional analysis of mass within the British fleet is used to estimate the partial effects of mass on the fuel consumption and secondary safety performance of vehicles. The results confirmed that fuel consumption increases as mass increases and is different for different combinations of fuel and transmission types. Additionally, increasing vehicle mass generally decreases the risk of injury to the driver of a given vehicle in the event of a crash. However, this relationship depends on the characteristics of the vehicle fleet, and in particular, is affected by changes in mass distribution within the fleet. We confirm that there is generally a trade-off in vehicle design between fuel economy and secondary safety performance imposed by mass. Cross-comparison of makes and models by model-specific effects reveal cases where this trade-off exists in other aspects of design. Although it is shown that mass imposes a trade-off in vehicle design between safety and fuel use, this does not necessarily mean that it imposes a trade-off between safety and environmental goals in the vehicle fleet as a whole because the secondary safety performance of a vehicle depends on both its own mass and the mass of the other vehicles with which it collides.  相似文献   

9.
The primary objective of this paper is to provide a statistical relationship between traffic conflicts estimated from microsimulation and observed crashes in order to evaluate safety performance, in particular the effect of countermeasures. A secondary objective is to assess the effect of conflict risk tolerance and number of simulation runs on the estimates of countermeasure effects so obtained. Conflicts were simulated for a sample of signalized intersections from Toronto, Canada, using VISSIM microscopic traffic simulation and several crash–conflict relationships were obtained. A separate sample of treated intersections from Toronto was used to compare countermeasure effects from the integrated crash–conflict expression to a conventional, but rigorous crash-based Empirical Bayes before-and-after analysis that was already done, with the results published, for the same sites and treatment. The countermeasure considered for this investigation involved changing the left turn signal operation for the treated intersection sample from permissive to protected-permissive. The results support the view that countermeasure effects can be estimated reliably from conflicts derived from microsimulation, and more so when a suitable number of simulation runs and conflict tolerance thresholds are used in the crash–conflict relationship.  相似文献   

10.
Red light cameras (RLCs) have been used to reduce right‐angle collisions at signalized intersections. However, the effect of RLCs on motorcycle crashes has not been well investigated. The objective of this study is to evaluate the effectiveness of RLCs on motorcycle safety in Singapore. This is done by comparing their exposure, proneness of at‐fault right‐angle crashes as well as the resulting right‐angle collisions at RLC with those at non‐RLC sites. Estimating the crash vulnerability from not‐at‐fault crash involvements, the study shows that with a RLC, the relative crash vulnerability (RCV) or crash‐involved exposure of motorcycles at right‐angle crashes is reduced. Furthermore, field investigation of motorcycle maneuvers reveal that at non‐RLC arms, motorcyclists usually queue beyond the stop line, facilitating an earlier discharge, and hence become more exposed to the conflicting stream. However at arms with a RLC, motorcyclists are more restrained to avoid activating the RLC and hence become less exposed to conflicting traffic during the initial period of the green. The study also shows that in right‐angle collisions, the proneness of at‐fault crashes of motorcycles is lowest among all vehicle types. Hence motorcycles are more likely to be victims than the responsible parties in right‐angle crashes. RLCs have also been found to be very effective in reducing at‐fault crash involvements of other vehicle types which may implicate exposed motorcycles in the conflicting stream. Taking all these into account, the presence of RLCs should significantly reduce the vulnerability of motorcycles at signalized intersections. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In certain fleet systems, the environmental impacts of operation are, to some extent, a controllable function of vehicle routing and scheduling decisions. However, little prior work has considered environmental impacts in fleet vehicle routing and scheduling optimization, in particular, where the impacts were assessed systematically utilizing life-cycle impact assessment methodologies such as those described by the Society of Environmental Chemistry and Toxicology. Here a methodology is presented for the joint optimization of cost, service, and life-cycle environmental consequences in vehicle routing and scheduling, which we develop for a demand-responsive (paratransit or dial-a-ride) transit system. We demonstrate through simulation that, as a result of our methodology, it is possible to reduce environmental impacts substantially, while increasing operating costs and service delays only slightly.  相似文献   

12.
Carsharing programs that operate as short-term vehicle rentals (often for one-way trips before ending the rental) like Car2Go and ZipCar have quickly expanded, with the number of US users doubling every 1–2 years over the past decade. Such programs seek to shift personal transportation choices from an owned asset to a service used on demand. The advent of autonomous or fully self-driving vehicles will address many current carsharing barriers, including users’ travel to access available vehicles.This work describes the design of an agent-based model for shared autonomous vehicle (SAV) operations, the results of many case-study applications using this model, and the estimated environmental benefits of such settings, versus conventional vehicle ownership and use. The model operates by generating trips throughout a grid-based urban area, with each trip assigned an origin, destination and departure time, to mimic realistic travel profiles. A preliminary model run estimates the SAV fleet size required to reasonably service all trips, also using a variety of vehicle relocation strategies that seek to minimize future traveler wait times. Next, the model is run over one-hundred days, with driverless vehicles ferrying travelers from one destination to the next. During each 5-min interval, some unused SAVs relocate, attempting to shorten wait times for next-period travelers.Case studies vary trip generation rates, trip distribution patterns, network congestion levels, service area size, vehicle relocation strategies, and fleet size. Preliminary results indicate that each SAV can replace around eleven conventional vehicles, but adds up to 10% more travel distance than comparable non-SAV trips, resulting in overall beneficial emissions impacts, once fleet-efficiency changes and embodied versus in-use emissions are assessed.  相似文献   

13.
14.
Vosooghi  Reza  Kamel  Joseph  Puchinger  Jakob  Leblond  Vincent  Jankovic  Marija 《Transportation》2019,46(6):1997-2015

The first commercial fleets of Robo-Taxis will be on the road soon. Today important efforts are made to anticipate future Robo-Taxi services. Fleet size is one of the key parameters considered in the planning phase of service design and configuration. Based on multi-agent approaches, the fleet size can be explored using dynamic demand response simulations. Time and cost are the most common variables considered in such simulation approaches. However, personal taste variation can affect the demand and consequently the required fleet size. In this paper, we explore the impact of user trust and willingness-to-use on the Robo-Taxi fleet size. This research is based upon simulating the transportation system of the Rouen-Normandie metropolitan area in France using MATSim, a multi-agent activity-based simulator. A local survey is made in order to explore the variation of user trust and their willingness-to-use future Robo-Taxis according to the sociodemographic attributes. Integrating survey data in the model shows the significant importance of traveler trust and willingness-to-use varying the Robo-Taxi use and the required fleet size.

  相似文献   

15.
To reduce injuries in road crashes, better understanding is needed between the relationship of injury severity and risk factors. This study seeks to identify the contributing factors affecting crash severity with broad considerations of driver characteristics, roadway features, vehicle types, pedestrian characteristics and crash characteristics using an ordered probit model. It also explores how the interaction of these factors will affect accident severity risk. Three types of accidents were investigated: two-vehicle crashes, single vehicle crashes and pedestrian accidents. The reported crash data in Singapore from 1992 to 2001 were used to illustrate the process of parameter estimation. Several factors such as vehicle type, road type, collision type, location type, pedestrian age, time of day of accident occurrence were found to be significantly associated with injury severity. It was also found that injury severity decreases over time for the three types of accident investigated.  相似文献   

16.
This paper studies the heterogeneous energy cost and charging demand impact of autonomous electric vehicle (EV) fleet under different ambient temperature. A data-driven method is introduced to formulate a two-dimensional grid stochastic energy consumption model for electric vehicles. The energy consumption model aids in analyzing EV energy cost and describing uncertainties under variable average vehicle trip speed and ambient temperature conditions. An integrated eco-routing and optimal charging decision making framework is designed to improve the capability of autonomous EV’s trip level energy management in a shared fleet. The decision making process helps to find minimum energy cost routes with consideration of charging strategies and travel time requirements. By taking advantage of derived models and technologies, comprehensive case studies are performed on a data-driven simulated transportation network in New York City. Detailed results show us the heterogeneous energy impact and charging demand under different ambient temperature. By giving the same travel demand and charging station information, under the low and high ambient temperature within each month, there exist more than 20% difference of overall energy cost and 60% difference of charging demand. All studies will help to construct sustainable infrastructure for autonomous EV fleet trip level energy management in real world applications.  相似文献   

17.
We study the shared autonomous vehicle (SAV) routing problem while considering congestion. SAVs essentially provide a dial-a-ride service to travelers, but the large number of vehicles involved (tens of thousands of SAVs to replace personal vehicles) results in SAV routing causing significant congestion. We combine the dial-a-ride service constraints with the linear program for system optimal dynamic traffic assignment, resulting in a congestion-aware formulation of the SAV routing problem. Traffic flow is modeled through the link transmission model, an approximate solution to the kinematic wave theory of traffic flow. SAVs interact with travelers at origins and destinations. Due to the large number of vehicles involved, we use a continuous approximation of flow to formulate a linear program. Optimal solutions demonstrate that peak hour demand is likely to have greater waiting and in-vehicle travel times than off-peak demand due to congestion. SAV travel times were only slightly greater than system optimal personal vehicle route choice. In addition, solutions can determine the optimal fleet size to minimize congestion or maximize service.  相似文献   

18.
Decision planning for an efficient fleet management is crucial for airlines to ensure a profit while maintaining a good level of service. Fleet management involves acquisition and leasing of aircraft to meet travelers' demand. Accordingly, the methods used in modeling travelers' demand are crucial as they could affect the robustness and accuracy of the solutions. Compared with most of the existing studies that consider deterministic demand, this study proposes a new methodology to find optimal solutions for a fleet management decision model by considering stochastic demand. The proposed methodology comes in threefold. First, a five‐step modeling framework, which is incorporated with a stochastic demand index (SDI), is proposed to capture the occurrence of uncertain events that could affect the travelers' demand. Second, a probabilistic dynamic programming model is developed to optimize the fleet management model. Third, a probable phenomenon indicator is defined to capture the targeted level of service that could be achieved satisfactorily by the airlines under uncertainty. An illustrative case study is presented to evaluate the applicability of the proposed methodology. The results show that it is viable to provide optimal solutions for the aircraft fleet management model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Establishment of effective cooperation between vehicles and transportation infrastructure improves travel reliability in urban transportation networks. Lack of collaboration, however, exacerbates congestion due mainly to frequent stops at signalized intersections. It is beneficial to develop a control logic that collects basic safety message from approaching connected and autonomous vehicles and guarantees efficient intersection operations with safe and incident free vehicle maneuvers. In this paper, a signal-head-free intersection control logic is formulated into a dynamic programming model that aims to maximize the intersection throughput. A stochastic look-ahead technique is proposed based on Monte Carlo tree search algorithm to determine the near-optimal actions (i.e., acceleration rates) over time to prevent movement conflicts. Our numerical results confirm that the proposed technique can solve the problem efficiently and addresses the consequences of existing traffic signals. The proposed approach, while completely avoids incidents at intersections, significantly reduces travel time (ranging between 59.4% and 83.7% when compared to fixed-time and fully-actuated control strategies) at intersections under various demand patterns.  相似文献   

20.
This paper attempts to optimize bus service patterns (i.e., all-stop, short-turn, and express) and frequencies which minimize total cost, considering transfer demand elasticity. A mathematical model is developed based on the objective total cost for a generalized bus route, which is optimized subject to a set of constraints ensuring sufficient capacity, an operable bus fleet, and service frequency conservation. To optimize the integrated service of a bus route with many stops, which is a combinatorial optimization problem, a genetic algorithm is developed and applied to search for the solution. A case study, based on a real-world bus route in New Jersey, is conducted to demonstrate the applicability and effectiveness of the developed model and the solution algorithm. Results show that the proposed methodology is fairly efficient, and the optimized bus service significantly reduces total cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号