首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
We consider two stochastic variants of the Share-a-Ride problem: one with stochastic travel times and one with stochastic delivery locations. Both variants are formulated as a two-stage stochastic programming model with recourse. The objective is to maximize the expected profit of serving a set of passengers and parcels using a set of homogeneous vehicles. Our solution methodology integrates an adaptive large neighborhood search heuristic and three sampling strategies for the scenario generation (fixed sample size sampling, sample average approximation, and sequential sampling procedure). A computational study is carried out to compare the proposed approaches. The results show that the convergence rate depends on the source of stochasticity in the problem: stochastic delivery locations converge faster than stochastic travel times according to the numerical test. The sample average approximation and the sequential sampling procedure show a similar performance. The performance of the fixed sample size sampling is better compared to the other two approaches. The results suggest that the stochastic information is valuable in real-life and can dramatically improve the performance of a taxi sharing system, compared to deterministic solutions.  相似文献   

2.
Carpooling, i.e. the sharing of vehicles to reach common destinations, is often performed to reduce costs and pollution. Recent work on carpooling takes into account, besides mobility matches, also social aspects and, more generally, non-monetary incentives. In line with this, we present GRAAL, a data-driven methodology for GReen And sociAL carpooling. GRAAL optimizes a carpooling system not only by minimizing the number of cars needed at the city level, but also by maximizing the enjoyability of people sharing a trip. We introduce a measure of enjoyability based on people’s interests, social links, and tendency to connect to people with similar or dissimilar interests. GRAAL computes the enjoyability within a set of users from crowd-sourced data, and then uses it on real world datasets to optimize a weighted linear combination of number of cars and enjoyability. To tune this weight, and to investigate the users’ interest on the social aspects of carpooling, we conducted an online survey on potential carpooling users. We present the results of applying GRAAL on real world crowd-sourced data from the cities of Rome and San Francisco. Computational results are presented from both the city and the user perspective. Using the crowd-sourced weight, GRAAL is able to significantly reduce the number of cars needed, while keeping a high level of enjoyability on the tested data-set. From the user perspective, we show how the entire per-car distribution of enjoyability is increased with respect to the baselines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号